YANG Xiaolu, ZHONG Siling, WAN Zhifeng. THE THERMODYNAMICS OF MUD DIAPIR/VOLCANO FLUID AND ITS INFLUENCE ON GAS HYDRATE OCCURRENCE[J]. Marine Geology Frontiers, 2018, 34(7): 15-23. DOI: 10.16028/j.1009-2722.2018.07003
Citation: YANG Xiaolu, ZHONG Siling, WAN Zhifeng. THE THERMODYNAMICS OF MUD DIAPIR/VOLCANO FLUID AND ITS INFLUENCE ON GAS HYDRATE OCCURRENCE[J]. Marine Geology Frontiers, 2018, 34(7): 15-23. DOI: 10.16028/j.1009-2722.2018.07003

THE THERMODYNAMICS OF MUD DIAPIR/VOLCANO FLUID AND ITS INFLUENCE ON GAS HYDRATE OCCURRENCE

More Information
  • Received Date: May 02, 2018
  • Available Online: August 26, 2020
  • The effect of mud diapir/mud volcano fluid on gas hydrate occurrence is a key problem to exploration of hydrate distribution in a mud diapir/mud volcano development zone. In this paper, we studied the thermodynamics of mud diapir/mud volcano fluid and its influence on gas hydrate occurrence, and the reason for giving up drilling of hydrate at the station SH5 of the Shenhu area of the Pearl River Mouth Basin in the northern South China Sea is discussed. The station of SH5 is located above a mud diapir.It seemed very hopeful in the beginning, but failed to collect hydrate samples successfully by drilling later on, since mud diapir piercing through the hydrate stability zone had made the deep thermal fluids migrating along the mud diapir and fracture channels.This process changed the temperature field of the hydrate stability zone and resulted in the decomposition of gas hydrates. Therefore, the mud diapir or mud volcano fluid thermal effect may directly influence the occurrence of hydrates. Exploring the movement of mud diapirs/mud volcanoes fluids and their thermal effects on hydrate accumulation will not only provide a theoretical basis for the research of gas hydrates accumulation dynamics under a fluid leakage tectonic environment, but also be important to gas hydrate exploration and development as well as resource assessment.
  • [1]
    Milkov A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4):183-197. http://cn.bing.com/academic/profile?id=977ccfa0f2ee590ea93694af4bc4d589&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    张洪涛, 张海启, 祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质, 2007, 34(6):953-961. DOI: 10.3969/j.issn.1000-3657.2007.06.001
    [3]
    王力峰, 付少英, 梁金强, 等.全球主要国家水合物探采计划与研究进展[J].中国地质, 2017, 44 (3):439-448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201703003
    [4]
    Clennell M B, Henry P, Hovland M, et al. Formation of natural gas hydrates in marine sediments:Gas hydrate growth and stability conditioned by host sediment properties[J]. Annals of the New York Academy of Sciences, 1999, 912(1):887-896. http://cn.bing.com/academic/profile?id=4b844a742a550097e734f8db6b9e78d9&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Dimitrov L I. Mud volcanoes:The most important pathway for degassing deeply buried sediments[J]. Earth-Science Reviews, 2002, 59(1/4):49-76. http://cn.bing.com/academic/profile?id=2e39302235ef8fc7bab2e55bfe390e38&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Feseker T, Dählmann A, Foucher J P, et al. In-situ sediment temperature measurements and geochemical porewater data suggest highly dynamic fluid flow at Isis mud volcano, eastern Mediterranean Sea[J]. Marine Geology, 2009, 261(1/4):128-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6332ea2ae8b7c4899da5b3f499404313
    [7]
    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology, 2000, 167 (1/2):29-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2c562fbf427ede3af9e2a7c4aac347e
    [8]
    孙启良, 吴时国, 陈端新, 等.南海北部深水盆地流体活动系统及其成藏意义[J].地球物理学报, 2014, 57(12):4052-4062. DOI: 10.6038/cjg20141217
    [9]
    Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea[J]. Geological Journal, 2018 (7):1-13.DOI: 10.1002/gj.3168.
    [10]
    Wan Z F, Wang X Q, Lu Y, et al. Geochemical characteristics of mud volcano fluids in the southern margin of the Junggar basin, NW China:implications for fluid origin and mud volcano formation mechanisms[J].International Geology Review, 2017, 59(6):1-13. http://cn.bing.com/academic/profile?id=b3b1623c9e36acc0f546dd6a4ae6b3fa&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    Henry P, Le Pichon X, Lallemant S, et al. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge:Results from Manon cruise[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B9):20297-20323. DOI: 10.1029/96JB00953
    [12]
    Poort J, Khlystov O M, Naudts L, et al. Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano, Lake Baikal[J]. Geo-Marine Letters, 2012, 32(5/6):407-417. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c4f5c1c7cb5e2d347d4ff60465cf5a79
    [13]
    Feseker T, Foucher J P, Harmegnies F. Fluid flow or mud eruptions? Sediment temperature distributions on Håkon Mosby mud volcano, SW Barents Sea slope[J]. Marine Geology, 2008, 247(3/4):194-207. http://www.sciencedirect.com/science/article/pii/S0025322707002277
    [14]
    Kapitanov V A, Tyryshkin I S, Krivolutskii N P, et al. Spatial distribution of methane over Lake Baikal surface[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2007, 66(4/5):788-795. http://cn.bing.com/academic/profile?id=7789ec7855fe54fa08ce7f83b32bdf7f&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    Crane K S E F, Ledouran S. Thermal evolution of the Western Svalbard Margin[J]. Marine Geophysical Research, 1988, 9(2):165-194. DOI: 10.1007/BF00369247
    [16]
    Eldholm O S E V, Nilsen A K G T. SW Barents Sea continental margin heat flow and Håkon Mosby Volcano[J]. Geo-Marine Letters, 1999, 19(1/2):29-37. DOI: 10.1007/s003670050090
    [17]
    Feseker T, Dählmann A, Foucher J P, et al. In-situ sediment temperature measurements and geochemical porewater data suggest highly dynamic fluid flow at Isis mud volcano, eastern Mediterranean Sea[J]. Marine Geology, 2009, 261(1/4):128-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6332ea2ae8b7c4899da5b3f499404313
    [18]
    Wallmann K, Drews M, Aloisi G, et al. Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes[J]. Earth & Planetary Science Letters, 2006, 248 (1/2):544-559. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d47bb3d336bccbeb2b5174a7fdc2ce0
    [19]
    De Beer D, Sauter E, Niemann H, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano[J]. Limnology & Oceanography, 2006, 51(3):1315-1331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4319/lo.2006.51.3.1315
    [20]
    Ginsburg G D, Ivanov V L, Soloviev V A. Natural gas hydrates of the World's Oceans[C]//Oil and Gas Content of the World's Oceans. PGO Sevmorgeologia, 1984: 141-158.
    [21]
    Ginsburg G D, Milkov A V, Soloviev V A, et al. Gas hydrate accumulation at the Hakon Mosby Mud Volcano[J]. Geo-Marine Letters, 1999, 19(1/2):57-67. DOI: 10.1007/s003670050093
    [22]
    Brown K, Westbrook G K. Mud diapirism and subcretion in the Barbados Ridge Accretionary Complex:The role of fluids in accretionary processes[J]. Tectonics, 1988, 7(3):613. DOI: 10.1029/TC007i003p00613
    [23]
    Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318(4):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ab647482948e848eb254ec0452515a4
    [24]
    吴能友, 张海啟, 杨胜雄, 等.南海神狐海域天然气水合物成藏系统初探[J].天然气工业, 2007(9):1-6. DOI: 10.3321/j.issn:1000-0976.2007.09.001
    [25]
    Wan Z F, Xu X, Wang X Q, et al. Geothermal analysis of boreholes in the Shenhu gas hydrate drilling area, northern South China Sea:Influence of mud diapirs on hydrate occurrence[J]. Journal of Petroleum Science and Engineering, 2017, 158:424-432. DOI: 10.1016/j.petrol.2017.08.053
    [26]
    Dickens G R, Quinby-Hunt M S. Methane hydrate stability in seawater[J]. Geophysical Research Letters, 2013, 21(19):2115-2118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2014GL062135
    [27]
    徐行, 李亚敏, 罗贤虎, 等.南海北部陆坡水合物勘探区典型站位不同类型热流对比[J].地球物理学报, 2012, 55(3):998-1006. DOI: 10.6038/j.issn.0001-5733.2012.03.030
  • Related Articles

    [1]MA Ruiqi, CAO Yuncheng, HE Wen, ZHENG Zihan, ZHU Zhiwei, CHEN Duofu. Changes of gas hydrate stability zone and fluid overpressure over the past 25 ka at GMGS2-16 site in the Dongsha area of northern South China Sea[J]. Marine Geology Frontiers, 2025, 41(1): 21-30. DOI: 10.16028/j.1009-2722.2023.231
    [2]YAN Dawei, SUN Zhilei, GENG Wei, LI Ang, CAO Hong, XU Cuiling, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, LI Qing, WU Nengyou, CAI Feng, LUO Di, SUN Yunbao, ZAHNG Dong, ZHOU Yucheng, LV Taiheng. Characteristics of submarine hydrate pingos and mud volcanoes and their effects on gas hydrate accumulation[J]. Marine Geology Frontiers, 2022, 38(1): 1-13. DOI: 10.16028/j.1009-2722.2021.192
    [3]GENG Wei, SUN Zhilei, WU Nengyou, CAO Hong, ZHANG Xilin, WANG Libo, ZHANG Xianrong, XU Cuiling, ZHAI Bin. INFLUENCE FACTORS FOR GAS HYDRATE FORMATION AND DECOMPOSITION IN SOUTHWEST BARENTS SEA: A REVIEW[J]. Marine Geology Frontiers, 2020, 36(9): 109-120. DOI: 10.16028/j.1009-2722.2020.103
    [4]LI Ang, CAI Feng, LI Qing, YAN Guijing, SUN Yunbao, DONG Gang, LUO Di. A GEOLOGICAL MODEL FOR SHALLOW GAS HYDRATES ACCUMULATION ASSOCIATED WITH MUD VOLCANO[J]. Marine Geology Frontiers, 2020, 36(9): 94-100. DOI: 10.16028/j.1009-2722.2020.065
    [5]MENG Dajiang, WEN Pengfei, ZHANG Baojin, ZHANG Ruwei, LI Yan, ZHAO Bin, SHEN Shangfeng. GAS HYDRATE RESERVOIR INVERSION AND SATURATION PREDICTION[J]. Marine Geology Frontiers, 2019, 35(11): 43-51. DOI: 10.16028/j.1009-2722.2019.11007
    [6]ZHANG Xianzheng, XIAO Hongyue, CHEN Siyu. INTEGRATED EVALUATION OF GAS HYDRATE AND GEOTHERMAL RESOURCES[J]. Marine Geology Frontiers, 2014, 30(6): 66-70.
    [7]XIAO Bo, SHEN Yan, LIU Fanglan. A TECHNOLOGY SYSTEM FOR PRESSURE KEEPING TRANSPORT AND TREATMENT OF GAS HYDRATE SAMPLES[J]. Marine Geology Frontiers, 2013, 29(10): 65-68.
    [8]HU Yang, XIA Bin, ZHANG Xiaolei, GUO Feng, SHI Qiuhua. GEOLOGICAL AND GEOCHEMICAL FEATURES AND EXPLORATION PROGRESS OF GAS HYDRATE[J]. Marine Geology Frontiers, 2012, 28(6): 27-34.
    [9]DONG Gang, GONG Jianming, WANG Jiasheng. GAS HYDRATE EXPLOITATION METHODS UPON TYPES AND OCCURRENCE OF GAS HYDRATE ACCUMULATIONS[J]. Marine Geology Frontiers, 2011, 27(6): 59-64.
    [10]DONG Gang, GONG Jianming, SU Xin. CORING TECHNOLOGY FOR MARINE GAS HYDRATE[J]. Marine Geology Frontiers, 2011, 27(3): 48-51,69.
  • Cited by

    Periodical cited type(5)

    1. 廖天奇,姚泽伟. 非洲西海岸里奥-德雷盆地泥底辟平面地质结构特征研究. 浙江大学学报(理学版). 2024(02): 212-219+260 .
    2. 刘欣欣,王小杰,徐华宁,杨睿,刘鸿,陈江欣. 天然气水合物地层剪切模量参数岩石物理计算及叠前反演. 海洋地质与第四纪地质. 2024(06): 60-70 .
    3. 闫大伟,孙治雷,耿威,李昂,曹红,徐翠玲,张喜林,翟滨,张现荣,李清,吴能友,蔡峰,骆迪,孙运宝,张栋,周渝程,吕泰衡. 海底水合物丘与泥火山的演化特征及其对天然气水合物聚集的影响. 海洋地质前沿. 2022(01): 1-13 . 本站查看
    4. 李彦龙,孙海亮,刘昌岭,邢兰昌,吴能友,孟庆国. ERT在水合物在线监测中的应用:以结融冰过程为例. 海洋地质前沿. 2020(03): 65-71 . 本站查看
    5. 商松华,许天福,刘文娜,贝科奇,田海龙. 神狐海域钻探区水合物聚集控制因素数值模拟分析. 科学技术创新. 2020(30): 24-25 .

    Other cited types(2)

Catalog

    Article views (228) PDF downloads (10) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return