LONG Genyuan, CHEN Wanli, CHEN Bo, et al. Sedimentary characteristics of a drilling core from the Zhongsha atoll lagoon: responses to sea level and provenance changes[J]. Marine Geology Frontiers, 2024, 40(6): 26-38. DOI: 10.16028/j.1009-2722.2023.198
Citation: LONG Genyuan, CHEN Wanli, CHEN Bo, et al. Sedimentary characteristics of a drilling core from the Zhongsha atoll lagoon: responses to sea level and provenance changes[J]. Marine Geology Frontiers, 2024, 40(6): 26-38. DOI: 10.16028/j.1009-2722.2023.198

Sedimentary characteristics of a drilling core from the Zhongsha atoll lagoon: responses to sea level and provenance changes

More Information
  • Received Date: August 09, 2023
  • Available Online: April 29, 2024
  • Based on thin-section observation, dating results, analysis of major and minor elements and carbon and oxygen stable isotopes, the sequence stratigraphy, sedimentary facies and geochemical characteristics of a 50.5-m drill core in the atoll lagoon were examined and its significance for paleoclimate and paleoenvironment was explored. Results show that sedimentary features well responded to the Late Quaternary sea level change and provenance. Using dating results, ten Pleistocene sequences were correlated with interglacial stages during Marine Isotope Stages 5-23. The gradual decrease in Sr and U values is due to the longer duration of exposure and meteoric diagenesis of the older sequence relative to the younger sequence in the carbonate platform, clearly indicating the existence of a sequence boundary. The reef facies were formed mainly during sea level fall, indicating progradational growth of the reef. Rapid sea level rise and slow sea level fall lead to reef facies preferring to grow in the highstand systems tracts of the sequences. Four potential sources were identified from the combined PMF (positive matrix factorization) factor profiles and factor contributions. Our results indicate the drilling reef layers in the modern lagoon can well reflect the sea level change controlled by the eccentricity cycles of 100 ka and that greater reef thickening of aggradational reef in the marginal platform than that of progradational reef in the lagoon, which enriched our understanding of the evolutional processes of the atoll with a deep lagoon.

  • [1]
    SUN Y,YIN Q,CRUCIFIX M,et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications,2019,10:352. DOI: 10.1038/s41467-018-08257-9
    [2]
    PISIAS N G,MOORE T C. The evolution of Pleistocene climate:a time series approach[J]. Earth and Planetary Science Letters 1981,52:450-458.
    [3]
    RAYMO M E,OPPO D W,CURRY W. The Mid-Pleistocene climate transition:a deep sea carbon isotopic perspective[J]. Paleoceanography,1997,12:546-559. DOI: 10.1029/97PA01019
    [4]
    HERBERT T D,PETERSON L C,LAWRENCE K T,et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science,2010,328:1530-1534. DOI: 10.1126/science.1185435
    [5]
    LISIECKI L E,RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography,2005,20:PA1003.
    [6]
    DROXLER A W,JORRY S J. The origin of modern atolls:challenging Darwin's deeply ingrained theory[J]. Annual Review of Marine Science,2021,13:537-573. DOI: 10.1146/annurev-marine-122414-034137
    [7]
    CAMOIN G F,EBREN P,EISENHAUER A,et al. A 300 000-yr coral reef record of sea level changes,Mururoa atoll (Tuamotu archipelago,French Polynesia)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2001,175:325-341.
    [8]
    MONTAGGIONI L F,BORGOMANO J,FOURNIER F,et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years [J]. Nature Geoscience,2018,11:426-432.
    [9]
    MELIM L A. Limitations on lowstand meteoric diagenesis in the Pliocene-Pleistocene of Florida and Great Bahama Bank:implications for eustatic sea-level models[J]. Geology,1996,24:893-896.
    [10]
    RITTER A C,MAVROMATIS V,DIETZEL M,et al. Exploring the impact of diagenesis on (isotope) geochemical and microstructural alteration features in biogenic aragonite[J]. Sedimentology,2017,64:1354-1380. DOI: 10.1111/sed.12356
    [11]
    WU F,XIE X N,COLETTI G,et al. Coralline algal and foraminiferal records of the Pliocene paleoclimatic conditions and water-depth changes in the northern South China Sea [J]. Marine and Petroleum Geology,2023,153:106276.
    [12]
    LI Y Q,YU K F,BIAN L Z,et al. Paleo-water depth variations since the Pliocene as recorded by coralline algae in the South China Sea [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2021,562:110107.
    [13]
    MENG M,YU K F,HALLOCK P,et al. Foraminifera indicate Neogene evolution of Yongle Atoll from Xisha Islands in the South China Sea [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,602:111163.
    [14]
    WEBSTER J M,WALLACE L,SILVER E,et al. Coralgal composition of drowned carbonate platforms in the Huon Gulf,Papua New Guinea; implications for lowstand reef development and drowning[J]. Marine Geology,2004,204:59-89. DOI: 10.1016/S0025-3227(03)00356-6
    [15]
    CHEN W L,HUANG X X,WU S G,et al. Facies character and geochemical signature in the late Quaternary meteoric diagenetic carbonate succession at the Xisha Islands,South China Sea[J]. Acta Oceanologica Sinica,2021,40:94-111.
    [16]
    LI R,QIAO P J,CUI Y C,et al. Composition and diagenesis of Pleistocene aeolianites at Shidao,Xisha Islands:implications for palaeoceanography and palaeoclimate during the last glacial period[J]. Palaeogeography Palaeoclimatology Palaeoecology,2018,490:604-616.
    [17]
    陈万利,吴时国,黄晓霞,等. 西沙群岛晚第四纪碳酸盐岩淡水成岩作用:来自永兴岛SSZK1钻孔的地球化学响应证据[J]. 沉积学报,2020,38(6):1296-1312.
    [18]
    LIU X F,LIU X M,WANG X K,et al. Dolostone as a reliable tracer of seawater lithium isotope composition[J]. Communications Earth & Environment,2023,4(1):58.
    [19]
    LI R,QIAO P J,CUI Y C,et al. Composition and diagenesis of Pleistocene aeolianites at Shidao,Xisha Islands:implications for palaeoceanography and palaeoclimate during the last glacial period [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,490:604-616.
    [20]
    WU F,ZHU Y H. Quaternary subsidence history of Xisha Islands (northern South China Sea):evidences from the reef-bank system [J]. Marine and Petroleum Geology,2022,144:105843.
    [21]
    ZHU X W,JIA G D,TIAN Y H,et al. Ancient hydrocarbon slicks recorded by a coral atoll in the South China Sea [J]. Chemical Geology,2023,619:121316.
    [22]
    LI G,XU W H,LUO Y,et al. Strontium isotope stratigraphy and LA-ICP-MS U-Pb carbonate age constraints on the Cenozoic tectonic evolution of the southern South China Sea [J]. GSA Bulletin. 2022,135 (1/2):271–285.
    [23]
    SHAO L,CUI Y C,QIAO P J,et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2017,485:504-516.
    [24]
    WANG P X,LI Q. The South China sea:paleoceanography and sedimentology[M]. Berlin:Springer Publishing,2009:0-506.
    [25]
    SIBUET J C,YEH Y C,LEE C S. Geodynamics of the South China Sea[J]. Tectonophysics,2016,692:98-119. DOI: 10.1016/j.tecto.2016.02.022
    [26]
    STEUER S,FRANKE D,MERESSE F,et al. Time constraints on the evolution of southern Palawan Island,Philippines from onshore and offshore correlation of Miocene limestones[J]. Journal of Asian Earth Sciences,2013,76:412-427. DOI: 10.1016/j.jseaes.2013.01.007
    [27]
    DING W W,LI J B,DONG C Z,et al. Oligocene–Miocene carbonates in the Reed Bank area,South China Sea,and their tectono-sedimentary evolution [J]. Marine Geophysical Research,2014,36:149-165.
    [28]
    DING W W,LI J B. Conjugate margin pattern of the Southwest Sub-basin,South China Sea:insights from deformation structures in the continent‐ocean transition zone[J]. Geological Journal,2015,51:524-534.
    [29]
    HUANG X X,BETZLER C,WU S G,et al. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank),South China Sea [J]. Marine and Petroleum Geology,2020,117:104349.
    [30]
    WU S G,YANG Z,WANG D W,et al. Architecture,development and geological control of the Xisha carbonate platforms,northwestern South China Sea[J]. Marine Geology,2014,350:71-83. DOI: 10.1016/j.margeo.2013.12.016
    [31]
    YI L,JIAN Z M,LIU X Y,et al. Astronomical tuning and magnetostratigraphy of Neogene biogenic reefs in Xisha Islands,South China Sea[J]. Science Bulletin,2018,63:564-573. DOI: 10.1016/j.scib.2018.04.001
    [32]
    SUN Z,ZHONG Z H,KEEP M,et al. 3D analogue modeling of the South China Sea:a discussion on breakup pattern[J]. Journal of Asian Earth Sciences,2009,34:544-556. DOI: 10.1016/j.jseaes.2008.09.002
    [33]
    LI C F,LI J,DING W,et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research:Solid Earth,2015,120:1377-1399. DOI: 10.1002/2014JB011686
    [34]
    陈俊锦,张经纬,刘时桥,等. 南海中沙群岛海域表层沉积物粒度特征及其输运趋势[J]. 海洋地质与第四纪地质,2022,42(2):15-27.
    [35]
    CHENG H,LAWRENCE EDWARDS R,SHEN C C,et al. Improvements in 230Th dating,230Th and 234U half-life values,and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters,2013,371/372:82-91. DOI: 10.1016/j.jpgl.2013.04.006
    [36]
    MCARTHUR J M,HOWARTH R J,BAILEY T R. Strontium isotope stratigraphy:LOWESS Version 3:best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age[J]. The Journal of Geology,2001,109:155-170.
    [37]
    WU F,XIE X,BETZLER C,et al. The impact of eustatic sea-level fluctuations,temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands,South China Sea)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,514:373-385.
    [38]
    PAATERO P,HOPKE P K. Rotational tools for factor analytic models[J]. Journal of Chemometrics,2009,23:91-100. DOI: 10.1002/cem.1197
    [39]
    HAJIKAZEMI E,AL-AASM I S,CONIGLIO M. Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation,southwestern Iran[J]. Geological Society,2010,330(1):253-272.
    [40]
    尤丽,于亚苹,廖静,等. 西沙群岛西科1井第四纪生物礁中典型暴露面的岩石学与孔隙特征[J]. 地球科学:中国地质大学学报,2015,40(4):671-676.
    [41]
    罗云,黎刚,徐维海,等. 南科1井第四系暴露面特征及其与海平面变化的关系[J]. 热带海洋学报,2022,41(1):143-157. DOI: 10.11978/2021013
    [42]
    WU S G,CHEN W L,HUANG X X,et al. Facies model on the modern isolated carbonate platform in the Xisha Archipelago,South China Sea[J]. Marine Geology,2020,425:106203.
    [43]
    MONTAGGIONI L F,BORGOMANO J,FOURNIER F,et al. Quaternary atoll development:new insights from the two‐dimensional stratigraphic forward modelling of Mururoa Island (Central Pacific Ocean)[J]. Sedimentology,2015,62:466-500. DOI: 10.1111/sed.12175
    [44]
    刘健,韩春瑞,吴建政,等. 西沙更新世礁灰岩大气淡水成岩的地球化学证据[J]. 沉积学报,1998,16(4):71-77.
    [45]
    DECHNIK B,WEBSTER J M,WEBB G E,et al. The evolution of the Great Barrier Reef during the Last Interglacial Period[J]. Global and Planetary Change,2017,149:53-71. DOI: 10.1016/j.gloplacha.2016.11.018
    [46]
    ZHAO K,DU X,JIA J,et al. Effects of sea-level variation and sedimentary noise variation on the development of biogenic reefs since the Pliocene among the Xisha Islands,South China Sea[J]. GSA Bulletin,2021,134:1781-1792.
    [47]
    朱伟林,王振峰,米立军,等. 南海西沙西科1井层序地层格架与礁生长单元特征[J]. 地球科学:中国地质大学学报,2015,40(4):677-687.
    [48]
    LIU J,WEBSTER J M,SALLES T,et al. The Formation of Atolls:new insights from numerical simulations.[J]. Journal of Geophysical Research:Earth Surface,2022,127:e2022JF006812.
    [49]
    LI T,LI X J,LUO W D,et al. Combined classification and source apportionment analysis for trace elements in western Philippine Sea sediments[J]. Science of The Total Environment,2019,675:408-419.
    [50]
    LI T,SUN G,YANG C,et al. Source apportionment and source-to-sink transport of major and trace elements in coastal sediments:combining positive matrix factorization and sediment trend analysis[J]. Science of The Total Environment,2019,651:344-356.
    [51]
    LI T,LI X J,ZHANG J Y,et al. Source identification and co-occurrence patterns of major elements in South China Sea sediments [J]. Marine Geology ,2020,428:106285.
    [52]
    DU S H,XIANG R,LIU J G,et al. The present-day atmospheric dust deposition process in the South China Sea[J]. Atmospheric Environment,2020,223:117261.
    [53]
    SWART P K. The geochemistry of carbonate diagenesis:the past,present and future[J]. Sedimentology,2015,62:1233-1304. DOI: 10.1111/sed.12205
    [54]
    CANFIELD D E. The geochemistry of river particulates from the continental USA:major elements[J]. Geochimica et Cosmochimica Acta,1997,61:3349-3365. DOI: 10.1016/S0016-7037(97)00172-5
    [55]
    CHEN W L,LIU G,WU S G,et al. Late Holocene lagoon succession and its response to environmental variations at Yongle atoll,Xisha Islands,South China Sea[J]. Geological Journal,2021,56:3155-3169.
    [56]
    XU L Q,LIU X D,SUN L G,et al. Distribution of radionuclides in the guano sediments of Xisha Islands,South China Sea and its implication[J]. Journal of Environmental Radioactivity,2010,101:362-368. DOI: 10.1016/j.jenvrad.2010.02.004
    [57]
    XU L Q,LIU X D,SUN L G,et al. Geochemical evidence for the development of coral island ecosystem in the Xisha Archipelago of South China Sea from four ornithogenic sediment profiles[J]. Chemical Geology,2011,286:135-145. DOI: 10.1016/j.chemgeo.2011.04.015
  • Related Articles

    [1]LIU Feifei, ZHOU Yaoqi, XU Hanhua, LI Manjie. Geochemical constraints on depositional environment of Late Mesozoic sedimentary rocks from the Ri-Qing-Wei Basin in the East Shandong[J]. Marine Geology Frontiers, 2023, 39(10): 22-33. DOI: 10.16028/j.1009-2722.2022.157
    [2]YUE Yuanfu, TANG Lichao. Characteristics of sea level changes in the northern South China Sea since the Holocene and prediction of the future trends[J]. Marine Geology Frontiers, 2023, 39(2): 1-16. DOI: 10.16028/j.1009-2722.2022.193
    [3]YUE Yuanfu, TANG Lichao, YU Kefu. General characteristics of sea-level changes along the North Atlantic coast in the past 2000 years[J]. Marine Geology Frontiers, 2022, 38(6): 1-15. DOI: 10.16028/j.1009-2722.2021.279
    [4]CHEN Junbing, LIU Longlong, WU Zhen, TANG Songhua, LIU Rongbo, ZHANG Xianxia, ZHANG Shengjiang. SHALLOW ACOUSTIC STRATIGRAPHY OF THE LATE QUATERNARY IN THE ZHOUSHAN ISLANDS OF HANGZHOU BAY[J]. Marine Geology Frontiers, 2021, 37(12): 49-57. DOI: 10.16028/j.1009-2722.2021.190
    [5]YUE Baojing, GAO Maosheng, SHAO Jiawang, HOU Guohua, YE Yongyu. GEOMORPHOLOGICAL EVOLUTION OF THE BARRIER-LAGOON SYSTEM NEAR THE JINGTANG PORT, HEBEI PROVINCE[J]. Marine Geology Frontiers, 2018, 34(9): 10-16. DOI: 10.16028/j.1009-2722.2018.09002
    [6]CHEN Yuliang, ZHENG Hongbo. THE APPLICATION OF XFR CORE SCANNING TO QUATERMATY SEDIMENTS[J]. Marine Geology Frontiers, 2014, 30(4): 51-59.
    [7]CHEN Hongjun, HUANG Wenkai, WU Jiaoqi. TYPICAL SEISMIC AND SEDIMENTARY FACIES OF THE LATE QUATERNARY IN THE NORTHWESTERN SOUTH CHINA SEA[J]. Marine Geology Frontiers, 2013, 29(11): 1-7.
    [8]CHEN Zhongyun, ZHANG Jianpei, ZHANG Tao, LU Fawei. STRATIGRAPHIC SEQUENCES IN XIHU SAG AND THEIR REPONSE TO SEA LEVEL CHANGES[J]. Marine Geology Frontiers, 2013, 29(9): 15-20.
    [9]QIU Jiandong, LIU Jian, BAI Weiming. PROGRESS OF THE STUDIES OF PALEOCLIMATE AND SEA LEVEL CHANGES IN THE MARINE OXYGEN ISOTOPE STAGE 3[J]. Marine Geology Frontiers, 2012, 28(11): 12-16.
    [10]SUN Xiaoyan, LI Xibin. GEOCHEMICAL CHARACTERISTICS OF RECENT 3 ka MUD FROM THE NORTHERN PART OF EAST CHINA SEA[J]. Marine Geology Frontiers, 2012, 28(4): 10-16.
  • Cited by

    Periodical cited type(3)

    1. 孙阳子,张向涛,雷永昌,邱欣卫,肖张波,阙晓铭,贾连凯. 珠江口盆地陆丰12-A油田“断-脊-盖”耦合远源成藏模式. 中国海上油气. 2024(01): 61-70 .
    2. 段威,田金强,李三忠,于强,陈瑞雪,龙祖烈. 南海珠江口盆地惠州凹陷东南缘远源凸起带油气成因及来源. 地学前缘. 2022(05): 176-187 .
    3. 曹兰柱,李熹微,鱼占文,项鑫,王紫豪,穆燕,张新樵. 断砂配置侧向输导油气特征的影响因素及其与油气聚集的关系. 成都理工大学学报(自然科学版). 2021(05): 549-557 .

    Other cited types(2)

Catalog

    Article views (77) PDF downloads (20) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return