MAO Shibo, SONG Peng, LI Xishuang, et al. Forward modeling of spark gun array source wavefield based on multi-grid[J]. Marine Geology Frontiers, 2022, 38(3): 52-58. DOI: 10.16028/j.1009-2722.2021.188
Citation: MAO Shibo, SONG Peng, LI Xishuang, et al. Forward modeling of spark gun array source wavefield based on multi-grid[J]. Marine Geology Frontiers, 2022, 38(3): 52-58. DOI: 10.16028/j.1009-2722.2021.188

Forward modeling of spark gun array source wavefield based on multi-grid

More Information
  • Received Date: July 14, 2021
  • Available Online: January 25, 2022
  • Ultra-high resolution seismic exploration based on sparker has become more important with time in marine regional geological survey and engineering geophysical exploration in China. In practical performance, the distance between sparkers is usually in a scale of centimeter, and thus it is difficult to carry out numerical simulation for spark gun array. To solve this problem, based on the conventional variable grid finite difference algorithm, this paper proposed a multi-grid strategy in the numerical modeling of spark gun array, and realized the high-precision 3D numerical modeling of the spark gun array based on the multi-grid algorithm. Numerical simulation experiments show that comparing to conventional staggered-grid finite difference numerical simulation, the multi-grid finite difference numerical simulation algorithm can significantly improve the computational efficiency and reduce the memory consumption. At the same time, it can effectively suppress the false reflection in the conventional variable grid algorithm, and realize the high-precision numerical simulation of the spark gun array.
  • [1]
    吴漩流. 大功率电火花震源的研究与设计[D]. 荆州: 长江大学, 2016: 1-8.
    [2]
    戚宾,王祥春,赵庆献. 海洋电火花震源地震勘探研究进展[J]. 物探与化探,2020,44(1):107-111.
    [3]
    骆迪,蔡峰,闫桂京,等. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿,2020,36(9):101-108.
    [4]
    裴彦良,刘保华,赵月霞,等. 脉冲等离子体震源及其在海洋地震勘探方面的应用[J]. 科技导报,2007,25(19):48-52.
    [5]
    CORD J,ALFRED B. Acoustic modelling on a grid of vertically varying spacing[J]. Geophysical Prospecting,1992,40(2):157-169. DOI: 10.1111/j.1365-2478.1992.tb00369.x
    [6]
    WANG Y,SCHUSTER G T. Finite-difference variable grid scheme for acoustic and elastic wave equation modeling[J]. SEG Technical Program Expanded Abstracts,1996,15:674-677.
    [7]
    李胜军,孙成禹,倪长宽,等. 声波方程有限差分数值模拟的变网格步长算法[J]. 工程地球物理学报,2007,4(3):207-212. DOI: 10.3969/j.issn.1672-7940.2007.03.008
    [8]
    朱生旺,曲寿利,魏修成,等. 变网格有限差分弹性波方程数值模拟方法[J]. 石油地球物理勘探,2007,42(6):634-639.
    [9]
    李振春,张慧,张华. 一阶弹性波方程的变网格高阶有限差分数值模拟[J]. 石油地球物理勘探,2008,43(6):711-716. DOI: 10.3321/j.issn:1000-7210.2008.06.017
    [10]
    刘春园,朱生旺,魏修成,等. 随机介质地震波正演模拟在碳酸盐岩储层预测中的应用[J]. 石油物探,2010,49(2):133-139.
    [11]
    张慧,李振春. 基于双变网格算法的地震波正演模拟[J]. 地球物理学报,2011,54(1):77-86. DOI: 10.3969/j.issn.0001-5733.2011.01.009
    [12]
    孙成禹,丁玉才. 波动方程有限差分双变网格算法的精度分析[J]. 石油地球物理勘探,2012,47(4):545-551.
    [13]
    郭念民,吴国忱. 基于PML边界的变网格高阶有限差分声波方程逆时偏移[J]. 石油地球物理勘探,2012,47(2):256-265.
    [14]
    李振春,李庆洋,黄建平,等. 一种稳定的高精度双变网格正演模拟与逆时偏移方法[J]. 石油物探,2014,53(2):127-136.
    [15]
    曲英铭,李振春,黄建平,等. 基于多尺度双变网格的时间域全波形反演[J]. 石油物探,2016,55(2):241-250.
    [16]
    SUN X D,LI Z C,JIA Y R. Variable-grid reverse-time migration of different seismic survey data[J]. Applied Geophysics,2017,14(4):517-522. DOI: 10.1007/s11770-017-0652-7
    [17]
    解闯,宋鹏,谭军,等. 声波方程变网格有限差分正演模拟的虚假反射分析[J]. 地球物理学进展,2019,34(2):639-648.
    [18]
    姜占东,范彩伟,黎孝璋,等. 基于变网格高阶有限差分的鬼波数值模拟研究[J]. 地球物理学进展,2021,36(1):365-373.
    [19]
    BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics,1994,114(2):185-200. DOI: 10.1006/jcph.1994.1159
  • Related Articles

    [1]TONG Siyou, YANG Linhan, ZHENG Jingjia, XU Xiugang. Research on high-precision detection technology for micro targets in shallow seabed of shallow sea[J]. Marine Geology Frontiers, 2024, 40(9): 84-95. DOI: 10.16028/j.1009-2722.2023.193
    [2]ZHANG Zixin, XING Lei, YANG Huiliang, LI Qianqian, ZHANG Hongmao, WEI Jia, LIU Hong. Simulation study on the accuracy of ocean vertical cable detection based on multiples reverse time migration[J]. Marine Geology Frontiers, 2024, 40(7): 80-86. DOI: 10.16028/j.1009-2722.2023.105
    [3]ZHANG Qinghuai, WANG Mingxing, WU Anchu, ZHU Libin, CHEN Wujin. Marine wide-azimuth high efficient acquisition experiment: modelling and de-blending[J]. Marine Geology Frontiers, 2023, 39(6): 93-100. DOI: 10.16028/j.1009-2722.2022.091
    [4]WANG Baoquan, WANG Zhiping, YU Xitong, SONG Zhangqiang. Application of quantitative reservoir prediction technology based on high frequency sequence framework in sand body[J]. Marine Geology Frontiers, 2022, 38(9): 78-85. DOI: 10.16028/j.1009-2722.2021.221
    [5]QIU Yu, LI Anqi, ZHOU Jie, SONG Aixue, HU Bin. CALIBRATING THE BOTTOM INTERFACE OF GRANITE WEATHERING CRUST RESERVOIR ON THE SONGNAN LIFT IN THE DEEP WATER AREAS OF QIONGDONGNAN BASIN[J]. Marine Geology Frontiers, 2021, 37(7): 87-96. DOI: 10.16028/j.1009-2722.2021.087
    [6]HE Chao, WU Shimin, LONG Genyuan. LITHOSPHERIC STRETCHING MODELING OF QIONGDONGNAN BASIN:BASED ON LINE 1[J]. Marine Geology Frontiers, 2017, 33(8): 24-31. DOI: 10.16028/j.1009-2722.2017.08004
    [7]QIAO Zhonglin, DU Lijun. RESEARCH ON IMPEDANCE FORWARD AND INVERSION PARAMETERS OF CONSTRAINED SPARSE SPIKE METHOD[J]. Marine Geology Frontiers, 2016, 32(8): 52-58. DOI: 10.16028/j.1009-2722.2016.08007
    [8]LIU Zhen, CAO Lihua, TONG Siyou, PU Jinjing, XU Jishang. PROBLEMS OF APPLICATION OF HIGH-FREQUENCY SUB-BOTTOM PROFILER TECHNOLOGY TO SUBMARINE PIPELINE INSPECTION[J]. Marine Geology Frontiers, 2015, 31(7): 66-70. DOI: 10.16028/j.1009-2722.2015.07010
    [9]LI Ying, PENG Gang, SHEN Hongtao. APPLICATION OF SEISMIC ROCK-PHYSICSIN THE NEOGENE RESERVOIR STUDY OF BOHAI A OILFIELD[J]. Marine Geology Frontiers, 2015, 31(5): 41-46. DOI: 10.16028/j.1009-2722.2015.05007
    [10]LI Zhixiang. APPLICATION OF SEISMIC FORWARD MODELING IN PRESALT STRUCTURES[J]. Marine Geology Frontiers, 2014, 30(8): 55-59.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (429) PDF downloads (36) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return