MENG Qingguo, LIU Changling, LI Chengfeng, et al. Experimental study on the forming process of multi-component gas hydrates in Qilian Mountain permafrost area[J]. Marine Geology Frontiers, 2022, 38(1): 72-79. DOI: 10.16028/j.1009-2722.2020.128
Citation: MENG Qingguo, LIU Changling, LI Chengfeng, et al. Experimental study on the forming process of multi-component gas hydrates in Qilian Mountain permafrost area[J]. Marine Geology Frontiers, 2022, 38(1): 72-79. DOI: 10.16028/j.1009-2722.2020.128

Experimental study on the forming process of multi-component gas hydrates in Qilian Mountain permafrost area

More Information
  • Received Date: September 07, 2020
  • Accepted Date: November 16, 2021
  • Available Online: November 30, 2021
  • Multi-component gas hydrates are widely distributed in the fractured layers of the Qilian Mountain permafrost area. It is of great significance to the study of forming processes of the multi-component gas hydrates and better understanding of the formation mechanism of the natural gas hydrates in the Qilian Mountain area. Copying the gas samples released from the Qilian Mountain gas hydrates, multi-component gas samples were artificially prepared. Based on the visual observations under different temperature-pressure conditions, the formation processes of multi-component gas hydrates were respectively studied in pure water, mine water samples and sediment cores collected from Qilian Mountain hydrate deposit area. Based on the morphological characteristics of the multi-component gas hydrates, the influences of different reaction media (mine water salinities and sediments) on the formation of multi-component gas hydrates are discussed. In the pure water system, the multi-component gas hydrates are formed in various forms, such as pine needle, hair filament and block, which appear preferentially at the gas-liquid interfaces and the vessel wall. Compared to the pure water, the formation induction times of multi-component gas hydrates in the mine water samples collected from Qilian Mountain permafrost area were relatively short, suggesting that the low salinity mine water samples have no obvious inhibition on the hydrate formation processes. The induction time of multi-component gas hydrates formation in the Qilian Mountain cores was shorter and the hydration rate was faster than those in solution systems. It is obvious that, the formation processes of multi-component gas hydrates in the Qilian Mountain media shows a feature of "interface priority ". The fracture surfaces of Qilian Mountain cores and the suspended particles in the mine water samples provide the "third interfaces" besides the gas-liquid interfaces and the vessel wall for the hydration reactions, which effectively accelerate the formation processes of multi-component gas hydrates.
  • [1]
    张炜,邵明娟,姜重昕,等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质,2018,38(5):1-13.
    [2]
    沙志彬,许振强,王平康,等. 世界天然气水合物研究发展对我国加快推进其产业化的启示[J]. 海洋地质前沿,2019,35(8):1-10.
    [3]
    陈强,胡高伟,李彦龙,等. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿,2020,36(9):44-55.
    [4]
    蔡峰,吴能友,闫桂京,等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿,2020,36(9):73-78.
    [5]
    LI J F,YE J L,QIN X W,et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology,2018,1(1):5-16. DOI: 10.31035/cg2018003
    [6]
    叶建良,秦绪文,谢文卫,等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质,2020,47(3):557-568. DOI: 10.12029/gc20200301
    [7]
    何家雄,钟灿鸣,姚永坚,等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿,2020,36(12):1-14.
    [8]
    王平康,祝有海,卢振权,等. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学:物理学 力学 天文学,2019,49(3):034606.
    [9]
    祝有海. 陆域天然气水合物资源勘查与试采取得系列成果[J]. 中国地质调查成果快讯,2017,3(63/64):1-5.
    [10]
    王平康,祝有海,卢振权,等. 祁连山冻土区天然气水合物岩性和分布特征[J]. 地质通报,2011,30(12):1839-1850. DOI: 10.3969/j.issn.1671-2552.2011.12.005
    [11]
    LIU C L,MENG Q G,HE X L,et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China[J]. Journal of Geochemical Exploration,2015,152:67-74. DOI: 10.1016/j.gexplo.2015.02.002
    [12]
    孟庆国,刘昌岭,李承峰,等. 青海聚乎更钻探区天然气水合物拉曼光谱特征[J]. 现代地质,2015,29(5):1180-1188. DOI: 10.3969/j.issn.1000-8527.2015.05.022
    [13]
    孟庆国,刘昌岭,贺行良,等. 祁连山冻土区天然气水合物激光拉曼光谱特征[J]. 地质通报,2011,30(12):1863-1867. DOI: 10.3969/j.issn.1671-2552.2011.12.008
    [14]
    贺行良,刘昌岭,孟庆国,等. 青海聚乎更钻探区含水合物岩芯气体组成及其指示意义[J]. 现代地质,2015,29(5):1194-1200. DOI: 10.3969/j.issn.1000-8527.2015.05.024
    [15]
    黄霞,祝有海,王平康,等. 祁连山冻土区天然气水合物烃类气体组分的特征和成因[J]. 地质通报,2011,30(12):1851-1856. DOI: 10.3969/j.issn.1671-2552.2011.12.006
    [16]
    苏凯,张国彪,孙友宏,等. 冻土区裂隙性地层中水合物形成机理及相态研究[J]. 石油钻探技术,2016,44(2):93-98. DOI: 10.11911/syztjs.201602016
    [17]
    田苗. 多元气体水合物生成与分解过程研究[D]. 青岛: 青岛大学, 2018.
    [18]
    孟庆国. 多组分气体水合物结构特征及生成分解过程研究[D]. 北京: 中国地质科学院, 2019.
    [19]
    KASHCHIEV D,FIROOZABADI A. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth,2003,250(3):499-515.
    [20]
    潘云仙,刘道平,黄文件,等. 气水合物形成时的诱导时间定义辨析[J]. 上海理工大学学报,2006,28(1):1-4. DOI: 10.3969/j.issn.1007-6735.2006.01.001
    [21]
    张保勇,刘金华,周泓吉. 瓦斯水合物诱导时间影响因素实验研究[J]. 黑龙江科技大学学报,2016,26(2):122-127. DOI: 10.3969/j.issn.2095-7262.2016.02.002
    [22]
    王新. 甲烷水合物在含动力学抑制剂体系中的生成动力学研究[D]. 杭州: 浙江工业大学, 2004.
    [23]
    SKOVBORG P,NG H J,RASMUSSEN P,et al. Measurement of induction times for the formation of methane and ethane gas hydrates[J]. Chemical Engineering Science,1993,48(3):445-453. DOI: 10.1016/0009-2509(93)80299-6
    [24]
    SLOAN E D. Clathrate hydrates of natural gases, Second Edition[M]. New York: Marcel Dekker, 1998.
    [25]
    唐翠萍,戴兴学,杜建伟,等. 含低剂量抑制剂体系气体水合物生成动力学[J]. 中国科学:化学,2011,41(1):145-151.
    [26]
    WU Q,ZHANG B Y. Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation[J]. Journal of Natural Gas Chemistry,2010,19(4):446-451. DOI: 10.1016/S1003-9953(09)60086-4
    [27]
    KE W,SVARTAAS T M,CHEN D Y. A review of gas hydrate nucleation theories and growth models[J]. Journal of Natural Gas Science and Engineering,2019,61:169-196. DOI: 10.1016/j.jngse.2018.10.021
    [28]
    METAXAS P J,Lim V W S,Booth C,et al. Gas hydrate formation probability distributions:induction times, rates of nucleation and growth[J]. Fuel,2019,252:448-457. DOI: 10.1016/j.fuel.2019.04.131
    [29]
    RENAULT-CRISPO J S,SERVIO P. Role of induction time on carbon dioxide and methane gas hydrate kinetics[J]. Journal of Natural Gas Science and Engineering,2017,43:81-89. DOI: 10.1016/j.jngse.2017.03.030
    [30]
    王树立,黄俊尧,闫朔,等. 基于化学亲和力模型的水合物生成动力学[J]. 化工进展,2020,39(3):966-974.
    [31]
    SUN Y H,JIANG S H,LI S L,et al. Growth kinetics of hydrate formation from water-hydrocarbon system[J]. Chinese Journal of Chemical Engineering,2019,27(9):2164-2179. DOI: 10.1016/j.cjche.2019.03.022
    [32]
    KINI R A,DEC S F,SLOAN E D. Methane + propane structure II hydrate formation kinetics[J]. Journal of Physical Chemistry A,2004,108(44):9550-9556. DOI: 10.1021/jp040301l
    [33]
    MAEDA N. Nucleation Curves of Methane-propane mixed gas hydrates in hydrocarbon oil[J]. Chemical Engineering Science,2016,155:1-9. DOI: 10.1016/j.ces.2016.07.047
    [34]
    MAEDA N. Nucleation curves of methane-propane mixed gas hydrates in the presence of a stainless steel wall[J]. Fluid Phase Equilibria,2016,413:142-147. DOI: 10.1016/j.fluid.2015.12.011
    [35]
    KLAPPROTH A,PILTZ R O,KENNEDY S,et al. Kinetics of sII, and mixed sI/sII, gas-hydrate growth for a methane/propane mixture using Neutron diffraction[J]. The Journal of Physical Chemistry C,2019,123(5):2703-2715. DOI: 10.1021/acs.jpcc.8b06693
    [36]
    BABAKHANI S M,BOUILLOT B,DOUZET J,et al. A new approach of studying mixed gas hydrates involving propane at non-equilibrium conditions and final state:an experimental study and modeling[J]. Chemical Engineering Science,2018,179:150-160. DOI: 10.1016/j.ces.2018.01.017
    [37]
    BABAKHANI S M,BOUILLOT B,Douzet J,et al. PVTx measurements of mixed clathrate hydrates in batch conditions under different crystallization rates:influence on equilibrium [J]. Journal of Chemical Thermodynamics,2018,122:73-84. DOI: 10.1016/j.jct.2018.03.006
    [38]
    李智峰,张强,吴强,等. 驱动力对瓦斯气体水合物成核诱导时间的影响[J]. 黑龙江科技大学学报,2013,23(4):329-332. DOI: 10.3969/j.issn.1671-0118.2013.04.003
    [39]
    吴强,朱玉梅,张保勇. 低浓度瓦斯气体水合分离过程中十二烷基硫酸钠和高岭土的影响[J]. 化工学报,2009,60(5):1193-1198. DOI: 10.3321/j.issn:0438-1157.2009.05.020
    [40]
    张强,吴强,张保勇,等. NaCl-SDS复合溶液中多组分瓦斯水合物成核动力学机理[J]. 煤炭学报,2015,40(10):2430-2436.
    [41]
    张保勇,周莉红,刘昌岭,等. 不同粒度沉积物介质对气体水合物成核的影响[J]. 天然气工业,2018,38(5):148-155. DOI: 10.3787/j.issn.1000-0976.2018.05.018
    [42]
    ZHANG B Y,ZHOU L H,LIU C L,et al. Influence of sediment media with different particle sizes on the nucleation of gas hydrate[J]. Natural Gas Industry B,2018,5(6):652-659. DOI: 10.1016/j.ngib.2018.11.001
    [43]
    王平康,祝有海,卢振权,等. 祁连山冻土区天然气水合物现场识别方法[J]. 矿床地质,2013,32(5):1045-1056. DOI: 10.3969/j.issn.0258-7106.2013.05.016
    [44]
    刘庭崧,刘妮,陈利涛,等. CH4水合物生长速率影响因素的分子动力学模拟[J]. 原子与分子物理学报,2020,37(5):778-782.
    [45]
    LOUIS Y,THOMAS C,ZACHARY A,et al. Hydrate growth on methane gas bubbles in the presence of salt[J]. Langmuir,2020,36(1):84-95. DOI: 10.1021/acs.langmuir.9b03451
    [46]
    HOLZAMMER C C,BRAEUER A. Raman spectroscopic study of the effect of aqueous salt solutions on the inhibition of carbon dioxide gas hydrates[J]. Journal of Physical Chemistry B,2019,123(10):2354-2361. DOI: 10.1021/acs.jpcb.8b11040
    [47]
    TAO Y Q,YAN K F,LI X S,et al. Effects of salinity on formation behavior of methane hydrate in montmorillonite[J]. Energies,2020,13(1):1-15.
    [48]
    孙始财. 天然气水合物安全开采基础研究[D]. 青岛: 山东科技大学, 2011.
    [49]
    STERN L A,KIRBY S H,DURHAM W B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice[J]. Science,1996,273(5283):1843-1848. DOI: 10.1126/science.273.5283.1843
    [50]
    TAYLOR C J,MILLER K T,KOH C A. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[J]. Chemical Engineering Science,2007,62(23):6524-6533. DOI: 10.1016/j.ces.2007.07.038
    [51]
    张保勇,程远平. 不同驱动力下瓦斯气体水合物的诱导时间分布[J]. 黑龙江科技大学学报,2014,24(1):43-47. DOI: 10.3969/j.issn.2095-7262.2014.01.010
  • Related Articles

    [1]ZHOU Jixiang, LIU Huimin, LU Kai, SHAN Rui, YANG Yuan. Application and prospect of deep-sea ARV in mineral resource investigation[J]. Marine Geology Frontiers, 2024, 40(2): 93-102. DOI: 10.16028/j.1009-2722.2023.005
    [2]GAN Shuangqing, ZHU Longhai, ZHANG Likui, SONG Yan, HU Rijun, BAI Xing, LIN Chaoran, XIE Bo. Transport and control factors of suspended sediment in Penglai offshore area in summer[J]. Marine Geology Frontiers, 2023, 39(12): 12-25. DOI: 10.16028/j.1009-2722.2022.238
    [3]WANG Milei, DOU Yanguang, ZOU Liang, XUE Biying, HU Rui, YUE Baojing, XU Gang, LIN Xi, LI Linsen. HYDROCHEMICAL CHARACTERISTICS OF GROUNDWATER AND GENESIS OF MINERAL WATER AT LAOSHAN MOUNTAIN AND SURROUNDING AREAS, QINGDAO[J]. Marine Geology Frontiers, 2021, 37(9): 17-24. DOI: 10.16028/j.1009-2722.2021.126
    [4]LI Ping, XIAO Lingli, YU Shengjie, LI Chunpeng, WANG Jian. OIL AND GAS ACCUMULATION CONDITIONS IN THE NEW FRONTIER DEEP WATER AREA OF TARANAKI BASIN, NEW ZEALAND[J]. Marine Geology Frontiers, 2019, 35(10): 56-62. DOI: 10.16028/j.1009-2722.2019.10007
    [5]DU Runlin, ZHANG Wang, SUN Jianwei, LIU Liwei, LIU Changchun. THE INFLUENCE OF COASTAL MOUNTAINS ON MARINE GRAVITY DATA[J]. Marine Geology Frontiers, 2019, 35(9): 25-28. DOI: 10.16028/j.1009-2722.2019.09005
    [6]ZHOU Hongfei, DAI Xin, LIU Ran, YANG Qing, FAN Yi, XIA Maolong, YUAN Baoguo, WANG Wenzhi. HYDROCARBON ACCUMULATION CONDITIONS OF LONGWANGMIAO FORMATION IN THE FRONT AREA OF THE DABA MOUNTAIN[J]. Marine Geology Frontiers, 2019, 35(2): 58-64. DOI: 10.16028/j.1009-2722.2019.02008
    [7]CHU Hongxian, FANG Zhonghua, SHI Huijie, LI Panfeng. APPLICATION OF NEWMARK DISPLACEMENT ANALYSIS TO EISMIC STABILITY EVALUATION OF SUBMARINE SLOPE[J]. Marine Geology Frontiers, 2017, 33(6): 53-58. DOI: 10.16028/j.1009-2722.2017.06008
    [8]JIN Lina, SHAN Xin, WANG Zhe, WANG Rui. PROGRESS ON SEQUENCE STRATIGRAPHY OF THE MIDDLE CAMBRIAN IN BEIJING WESTERN MOUNTAIN[J]. Marine Geology Frontiers, 2016, 32(12): 1-9. DOI: 10.16028/j.1009-2722.2016.12001
    [9]ZHANG Jianwei, LIU Jianxia, GUO Huiling, SHEN Weixing, WANG Xikui, CHEN Yan, LU Zhongcheng. PALEO-CLIMATIC CHARACTERISTICS DURING THE LAST GLACIAL STAGE OF QUATERNARY IN THE TAISHAN MOUNTAIAN AREA[J]. Marine Geology Frontiers, 2011, 27(11): 45-50.
    [10]GUO Xingwang, ZHU Youhai. SATURATION EVALUATION OF GAS HYDRATE IN PERMAFROST SEDIMENTS[J]. Marine Geology Frontiers, 2011, 27(5): 59-66.
  • Cited by

    Periodical cited type(1)

    1. Qing-guo Meng,Chang-ling Liu,Zhen-quan Lu,Xi-luo Hao,Cheng-feng Li,Qing-tao Bu,Yun-kai Ji,Jia-xian Wang. Growth behavior and resource potential evaluation of gas hydrate in core fractures in Qilian Mountain permafrost area, Qinghai-Tibet Plateau. China Geology. 2023(02): 208-215 .

    Other cited types(1)

Catalog

    Article views (181) PDF downloads (6) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return