HE Jiaxiong, LI Fuyuan, WANG Houjin, ZHAO Bin. Genetic Mechanism of Deepwater Basins and Their Effects on Oil and Gas Resources on the Continental Margin ofthe Northern South China Sea[J]. Marine Geology Frontiers, 2020, 36(3): 1-11. DOI: 10.16028/j.1009-2722.2019.213
Citation: HE Jiaxiong, LI Fuyuan, WANG Houjin, ZHAO Bin. Genetic Mechanism of Deepwater Basins and Their Effects on Oil and Gas Resources on the Continental Margin ofthe Northern South China Sea[J]. Marine Geology Frontiers, 2020, 36(3): 1-11. DOI: 10.16028/j.1009-2722.2019.213

Genetic Mechanism of Deepwater Basins and Their Effects on Oil and Gas Resources on the Continental Margin ofthe Northern South China Sea

More Information
  • Received Date: December 04, 2019
  • On the northern slope of the South China Sea, both the genesis and distribution of energy resources, such as deepwater oil and gas and gas hydrates, show a spatial-temporal coupling pattern and genetic relationship with their crustal and lithospheric deep structures, especially the types of shallow crustal sedimentary basins and basin-forming mechanisms. They are also the hot focus and key concerns among the oil and gas exploration researchers and academic scholars. Based on the geological and geophysical data collected from the marine geological surveys and oil and gas exploration and development sectors, the basic geological characteristics of deep lithospheric crust tectonic units along the northern margin of the South China Sea are analyzed in this paper. Based on the new model of crustal detachment and thinning along the continental margin by extension, we studied the spatial and temporal coupling relationship between the deep crustal structures and the deep-water basins, and discussed the genesis of deep-water basins and its resource effects as well as their relationship with deep-water oil and gas and hydrate accumulations. It is predicted that the oil and gas resource potential and exploration prospects of deep-water and ultra-deep-water basins in the continental slope-ocean-contilental transitional zone are obviously better than those in shallow water basins on the continental shelf. The potential of natural gas hydrate is also huge in deep-water and ultra-deep-water basins. In conclusion, the deep water basins are important strategic replacemnt area for sustainable development of offshore oil and gas exploration and development in China.

  • [1]
    何家雄, 刘海龄, 姚永坚, 等.南海北部大陆边缘盆地油气地质及资源前景[M].北京:石油工业出版社, 2008.
    [2]
    米立军, 张向涛, 庞雄, 等.珠江口盆地形成机制与油气地质[J].石油学报, 2019, 40(S1):1-10. DOI: 10.7623/syxb2019S1001
    [3]
    我国油气资源动态评价与预测[R].北京: 原国土资源部全国油气资源评价动态评价项目组, 2014.
    [4]
    Patrick U, Gwenn P, Gianreto M, et al. Hyper-extended crust in the South Atlantic: In search of a model [J]. Petroleum Geoscience, 2010, 16: 207-215. DOI: 10.1144/1354-079309-904
    [5]
    任建业, 庞雄, 雷超, 等.被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J].地学前缘, 2015, 22(1):102-114. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501009
    [6]
    任建业, 庞雄, 于鹏, 等.南海北部陆缘深水-超深水盆地成因机制分析[J].地球物理学报, 2018, 61(12):4901-4920. DOI: 10.6038/cjg2018L0558
    [7]
    庞雄, 任建业, 郑金云, 等.陆缘地壳强烈拆离薄化作用下的油气地质特征:以南海北部陆缘深水区白云凹陷为例[J].石油勘探与开发, 2018, 45(1): 27-39. http://d.old.wanfangdata.com.cn/Periodical/syktykf201801003
    [8]
    Mohn G, Karner G D, Manatschal G, et al. Structural and strati-graphic evolution of the Iberia-Newfoundland hyper-extendrifted margin: a quantitative modeling approach[J]. Geological Society, London, Special Publications, 2015, 413(1):53-89. DOI: 10.1144/SP413.9
    [9]
    吕川川, 郝天跳, 丘学林, 等.南海西南次海盆北缘海底地震仪测线深部地壳结构研究[J].地球物理学报, 2011, 54(12):3117-3126. DOI: 10.3969/j.issn.0001-5733.2011.12.012
    [10]
    丘学林, 赵明辉, 敖威, 等.南海西南次海盆与南沙地块的OBS探测和地壳结构[J].地球物理学报, 2011, 54(12): 3117-3128. DOI: 10.3969/j.issn.0001-5733.2011.12.012
    [11]
    夏少红, 丘学林, 赵明辉, 等.南海共扼大陆边缘地壳结构及其类型特征地球科学[J].2011, 36(5): 877-885. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201105016.htm
    [12]
    庞雄, 施和生, 朱明, 等.再论白云深水区油气勘探前景[J].中国海上油气, 2014, 26(3): 23-29. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201403003
    [13]
    庞雄, 陈长民, 彭大钧, 等.南海珠江深水扇系统及油气[M].北京:科学出版社, 2007.
    [14]
    代一丁, 庞雄.珠江口盆地珠二坳陷石油地质特征[J].中国海上油气(地质), 1999, 13(3): 169-173. http://www.cnki.com.cn/Article/CJFDTotal-ZHSD199903003.htm
    [15]
    龚再升.中国近海大油气田[M].北京:石油工业出版社, 1997.
    [16]
    庞雄, 朱明, 柳保军, 等.南海北部珠江口盆地白云凹陷深水区重力流沉积机理[J].石油学报, 2014, 35(4): 646-653. http://d.old.wanfangdata.com.cn/Periodical/syxb201404004
    [17]
    庞雄.深水重力流沉积的层序地层结构与控制因素:南海北部白云深水区重力流沉积层序地层学研究思路[J].中国海上油气, 2012, 24(2): 1-8. DOI: 10.3969/j.issn.1673-1506.2012.02.001
    [18]
    许怀智, 张迎朝, 林春明, 等.琼东南盆地中央峡谷天然气成藏特征及其主控因素[J].地质学报, 2014, 88(9): 1741-1752. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201409010
    [19]
    杨金海, 李才, 李涛, 等.琼东南盆地深水区中央峡谷天然气成藏条件与成藏模式[J].地质学报, 2014, 88(11): 2141-2149. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201411011
    [20]
    唐晓音, 胡圣标, 张功成, 等.珠江口盆地大地热流特征及其与热岩石圈厚度的关系[J].地球物理学报, 2014, 57(6): 857-1867. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201507200000002500
    [21]
    米立军, 袁玉松, 张功成, 等.南海北部深水区地热特征及其成因[J].石油学报, 2009, 30(1): 27-32. DOI: 10.3321/j.issn:0253-2697.2009.01.005
    [22]
    张迎朝, 甘军, 杨希冰, 等.琼东南盆地陵水凹陷构造演化及其对深水大气田形成的控制作用[J].海洋地质前沿, 2017, 33(10): 22-31. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201710003
    [23]
    徐新德, 张迎朝, 梁刚, 等.南海北部琼东南盆地深水区烃源条件及天然气成藏机制[J].天然气地球科学, 2016, 27 (11): 1985-1992. DOI: 10.11764/j.issn.1672-1926.2016.11.1985
    [24]
    张迎朝, 徐新德, 甘军, 等.琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J].地质学报, 2017, 91(7):1620-1633. DOI: 10.3969/j.issn.0001-5717.2017.07.013
    [25]
    张迎朝, 徐新德, 甘军, 等.琼东南盆地深水区L18气田上新统地层圈闭气田形成条件及成藏模式[J].海洋学报, 2019, 41(3):121-133. DOI: 10.3969/j.issn.0253-4193.2019.03.012
  • Related Articles

    [1]YUE Yuanfu, TANG Lichao. Characteristics of sea level changes in the northern South China Sea since the Holocene and prediction of the future trends[J]. Marine Geology Frontiers, 2023, 39(2): 1-16. DOI: 10.16028/j.1009-2722.2022.193
    [2]LI Yue, LI Bo, LI Tao. Distribution pattern and influence factors of benthic foraminifera in the surface sediments of northern South China Sea[J]. Marine Geology Frontiers, 2022, 38(2): 30-36. DOI: 10.16028/j.1009-2722.2021.027
    [3]MA Ruigang, LIU Chuanlian. PALEOCEANOGRAPHIC PATTERNS OF MARINE HYDROCARBON SOURCE ROCKS AND ITS INDICATING SIGNIFICANCE TO THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology Frontiers, 2020, 36(8): 11-18. DOI: 10.16028/j.1009-2722.2019.164
    [4]YI Shantang, HU Xiaosan, LUO Zongjie, LUO Weidong. GEOMORPHOLOGICAL CHARACTERISTICS AND CONTROLLING FACTORS OF THE YITONG CANYON GROUP ON THE NORTHERN SLOPE OF THE SOUTH CHINA SEA[J]. Marine Geology Frontiers, 2020, 36(4): 18-26. DOI: 10.16028/j.1009-2722.2019.185
    [5]HUANG Wenkai. CHARACTERISTICS AND PINCH-OUT OF LOW VELOCITY LAYERS IN THE CRUST OF NORTHERN SOUTH CHINA SEA MARGIN[J]. Marine Geology Frontiers, 2017, 33(8): 1-10. DOI: 10.16028/j.1009-2722.2017.08001
    [6]ZHANG Wei, LIANG Jinqiang, HE Jiaxiong, CONG Xiaorong, SU Pibo. CHARACTERISTICS OF MUD DIAPIR AND GAS CHIMNEY AND THEIR RELATIONSHIP WITH RESERVOIR FORMING FOR PETROLEUM AND NATURAL GAS HYDRATE ON NORTHERN SLOPE OF THE SOUTH CHINA SEA[J]. Marine Geology Frontiers, 2017, 33(7): 11-23. DOI: 10.16028/j.1009-2722.2017.07002
    [7]JU Dong, LIU Hao, YAO Yongjian. THE LATE MESOZOIC THRUST FAULT BELT IN THE NORTHERN PART OF THE SOUTH CHINA SEA AND ITS TECTONIC TRANSITION[J]. Marine Geology Frontiers, 2015, 31(8): 16-24. DOI: 10.16028/j.1009-2722.2015.08003
    [8]WANG Jingli, LIANG Jinqiang, ZONG Xin, GONG Yuehua, WAN Tinghui. DIFFERENTIATED DISTRIBUTION OF METHANE HYDRATE IN THE SHENHU AREA OF THE NORTHERN SOUTH CHINA SEA AND CONTROLLING FACTORS[J]. Marine Geology Frontiers, 2015, 31(1): 24-30. DOI: 10.16028/j.1009-2722.2015.01004
    [9]SHANG Jiujing, SHA Zhibin, LIANG Jinqiang, WU Lushan. ACOUSTIC REFLECTIONS OF SHALLOW GAS ON THE NORTHERN SLOPE OF SOUTH CHINA SEA AND IMPLICATIONS FOR GAS HYDRATE EXPLORATION[J]. Marine Geology Frontiers, 2013, 29(10): 23-30.
    [10]WAN Zhifeng, SHI Qiuhua, CAI Song. RIFTING OF PASSIVE MARGINS AND THE TECTONIC BEHAVIOR OF THE NORTHERN MARGIN OF SOUTH CHINA SEA[J]. Marine Geology Frontiers, 2011, 27(9): 26-31.
  • Cited by

    Periodical cited type(14)

    1. 陈奎,胡德胜,宋瑞有,龚宇,肖大志,黄安敏,朱玉双. 深水中大型气田滚动勘探技术体系与成效——以琼东南盆地中央峡谷A边际气田为例. 石油实验地质. 2024(01): 1-10 .
    2. 何家雄,关进安,王梦荷,苏丕波. 南海北部气烟囱成因及其与油气及水合物运聚成藏关系. 海洋地质前沿. 2024(04): 1-8 . 本站查看
    3. 热西提·亚力坤,单玄龙,郝国丽,李康. 珠江口盆地西江主洼泥-流体底辟及其发育条件. 海洋地质前沿. 2023(07): 58-69 . 本站查看
    4. 刘昆,宋鹏,胡雯燕,李虎,毛雪莲. 南海北部琼东南盆地烃源岩发育特征与气源综合分析. 海洋地质与第四纪地质. 2022(06): 173-184 .
    5. 刘冲,彭俊峰,闫琢玉,张东峰,郑磊,卢梅. 琼东南盆地陵南斜坡带火山岩储层岩性与蚀变特征. 东华理工大学学报(自然科学版). 2022(06): 548-553+568 .
    6. ZHAO Zhigang,ZHANG Hao,CUI Yuchi,TANG Wu,QIAO Peijun. Cenozoic Sea-land Transition and its Petroleum Geological Significance in the Northern South China Sea. Acta Geologica Sinica(English Edition). 2021(01): 41-54 .
    7. 马晓倩,刘军,朱定伟,李三忠,李颖薇,索艳慧,周洁,李玺瑶,王光增,王鹏程,刘泽. 多期走滑拉分盆地的沉积响应:以南海北部珠江口盆地为例. 大地构造与成矿学. 2021(01): 64-78 .
    8. 高阳东,向绪洪,张向涛. 南海北部新生代沉积演变及其油气地质意义. 天然气地球科学. 2021(05): 645-656 .
    9. 孟祥伟,黄博晓,闫宏生,陈永訢,刘建成. 深海重力锚在黏土中承载性能的模型试验. 船舶工程. 2021(06): 154-161 .
    10. 黄时卓,宋鹏,朱继田,李芳,毛雪莲,廖键. 基于深水区宽频地震的天然气水合物识别方法. 海洋地质前沿. 2021(07): 52-59 . 本站查看
    11. 廖晋,罗钧升,宋鹏,陆江,张金锋. 琼东南盆地气烟囱发育特征、成因类型及对水合物成藏的控制作用. 海洋地质前沿. 2021(07): 33-42 . 本站查看
    12. 李胜勇,胡林,甘军,吴其林,李夏露,李明,陈奎,李凤霞,郑飞. 琼东南盆地深水区陵南低凸起古潜山油气成藏条件. 海洋地质前沿. 2021(07): 68-75 . 本站查看
    13. 毛雪莲,朱继田,宋鹏,郭明刚,黄时卓. 琼东南盆地深水区天然气水合物稳定域分布特征与预测. 海洋地质前沿. 2021(10): 58-63 . 本站查看
    14. 帅庆伟,张莉,雷振宇,骆帅兵,钱星,刘建平,周佳维. 北康盆地主要地质界面时代确定及油气地质意义. 海洋地质前沿. 2020(10): 32-41 . 本站查看

    Other cited types(7)

Catalog

    Article views (361) PDF downloads (43) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return