YU Lanfang, WU Xiao, BI Naishuang, LIU Jingpeng, WANG Houjie. TEMPORAL VARIATIONS OF THE CHLOROPHYLL-a CONCENTRATION OFF THE CHANGJIANG (YANGTZE) RIVER MOUTH AND RESPONSE TO THE THREE GORGES DAM[J]. Marine Geology Frontiers, 2020, 36(7): 56-63. DOI: 10.16028/j.1009-2722.2019.124
Citation: YU Lanfang, WU Xiao, BI Naishuang, LIU Jingpeng, WANG Houjie. TEMPORAL VARIATIONS OF THE CHLOROPHYLL-a CONCENTRATION OFF THE CHANGJIANG (YANGTZE) RIVER MOUTH AND RESPONSE TO THE THREE GORGES DAM[J]. Marine Geology Frontiers, 2020, 36(7): 56-63. DOI: 10.16028/j.1009-2722.2019.124

TEMPORAL VARIATIONS OF THE CHLOROPHYLL-a CONCENTRATION OFF THE CHANGJIANG (YANGTZE) RIVER MOUTH AND RESPONSE TO THE THREE GORGES DAM

More Information
  • Received Date: May 21, 2019
  • Available Online: July 05, 2020
  • Temporal variations of sea surface chlorophyll-a concentration off the Changjiang (Yangtze) River mouth were investigated using SeaWiFS and MODIS data over the period of 1997-2012. The datasets of water and sediment discharge at Datong Station were also collected in order to examine the relationship between chlorophyll-a concentration in Yangtze River estuary and the river water and sediment discharge, as well as to clarify its response to the TGD Project. The results showed that both the average annual chlorophyll-a concentration with the annual water discharge, and the average monthly chlorophyll-a concentration with the monthly water discharge showed a good linear relationship (R2=0.72; R2=0.89). But the chlorophyll-a concentration has a poorer relationship with the sediment discharge from Yangtze River, which showed that the contribution of water discharge carrying dissolved nutrients to phytoplankton is greater than the part provided by sediment. Besides, the annual chlorophyll-a concentration in the study area has a decrease tendency after the TGD, the monthly average chlorophyll-a concentration also showed a delay of the spring and summer peak. It may be related to the spring drought caused by more dry years after TGD, and the reservoir operation mechanism. Although the TGD operation mechanism increased the water discharge in the dry season, the chlorophyll-a concentration showed a decrease tendency because of the lower temperature and lower transparency caused by the strong sediment resuspension in the coastal area in winter time.
  • [1]
    Walling D E,Fang D. Recent trends in the suspended sediment loads of the world's rivers[J]. Global and Planetary Change,2003,39(1/2):111-126.
    [2]
    Meybeck M,Vörösmarty C. Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene[J]. Comptes Rendus Geoscience,2005,337(1/2):107-123.
    [3]
    Milliman J D,Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. Journal of Geology,1992,100(5):525-544. DOI: 10.1086/629606
    [4]
    Gong G C,Chang J,Chiang K P,et al. Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the three Gorges Dam[J]. Geophysical Research Letters,2006,33(7):684-696.
    [5]
    Wang H,Saito Y,Zhang Y,et al. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia[J]. Earth-Science Reviews,2011,108(1/2):80-100.
    [6]
    周伟华,袁翔城,霍文毅,等. 长江口邻域叶绿素 a 和初级生产力的分布[J]. 海洋学报(中文版),2004,26(3):143-150.
    [7]
    洪官林. 长江口及邻近海域叶绿素的光学特性及其遥感应用[D]. 上海: 华东师范大学, 2011.
    [8]
    Corine G,Amo Y D,Sautour B,et al. Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem (Arcachon Bay, France)[J]. Estuarine Coastal & Shelf Science,2008,76(3):642-656.
    [9]
    Cloern J E. Our evolving conceptual model of the coastal eutrophication problem[J]. Marine Ecology Progress,2001,210:223-253. DOI: 10.3354/meps210223
    [10]
    Wu X,Duan H Bi N,Yuan P,et al. Interannual and seasonal variation of chlorophyll-a off the Yellow River Mouth (1997—2012): dominance of river inputs and coastal dynamics[J]. Estuarine, Coastal and Shelf Science,2016,183:402-412. DOI: 10.1016/j.ecss.2016.08.038
    [11]
    马 颖,李琼芳,王鸿杰,等. 人类活动对长江干流水沙关系的影响的分析[J]. 水文,2008,28(2):38-42. DOI: 10.3969/j.issn.1000-0852.2008.02.010
    [12]
    朱鉴远. 长江沙量变化和减沙途径探讨[J]. 水力发电学报,2000(3):38-48. DOI: 10.3969/j.issn.1003-1243.2000.03.005
    [13]
    Yang S L,Zhao Q Y,Belkin M. Temporal variation in the sediment load of the Yangtze River and the influences of the human activities[J]. Journal of Hydrology,2002,263(1/4):56-71.
    [14]
    张德兵,何素萍,胡国祥,等. 三峡水库蓄水后长江中游干流来水量变化分析[J]. 人民长江,2013,44(1):1-3, 17. DOI: 10.3969/j.issn.1001-4179.2013.01.002
    [15]
    陈吉余. 21世纪的长江河口初探[M]. 北京: 海洋出版社, 2009.
    [16]
    孔凡洲. 长江口赤潮区浮游植物的粒级结构、种类组成和色素分析[D]. 青岛: 中国科学院研究生院(海洋研究所), 2012.
    [17]
    李玲玲,于志刚,姚庆祯,等. 长江口海域营养盐的形态和分布特征[J]. 水生态学杂志,2009,30(2):15-20.
    [18]
    王保栋. 长江冲淡水的扩展及其营养盐的输送[J]. 黄渤海海洋学报,1998,16(2):41-47.
    [19]
    褚忠信,翟世奎,章 磊,等. 三峡水库2003年蓄水对长江悬沙中值粒径的影响[J]. 海洋湖沼通报,2007(3):23-28. DOI: 10.3969/j.issn.1003-6482.2007.03.004
    [20]
    O'Reilly J E, Maritorena S, Siegel D A, et al. Ocean color chlorophyll-a algorithms for SeaWiFS, OC2 and OC4: version 4[C]//Hooker S B, Firestone E R. NASA Technical Memorandum. Greenbelt, Maryland: NASA-GSFC(Chapter 2), 2000, 11: 9-23.
    [21]
    Zhang C Y,Hu C M,Shang S L,et al. Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China[J]. Remote Sensing of Environment,2006,102(3/4):250-263.
    [22]
    张 瑞,汪亚平,潘少明. 长江大通水文站径流量的时间系列分析[J]. 南京大学学报(自然科学版),2006,42(4):423-434. DOI: 10.3321/j.issn:0469-5097.2006.04.012
    [23]
    中华人民共和国水利部. 中国河流泥沙公报[M]. 北京: 中国水利水电出版社, 1997—2012.
    [24]
    Liu D Y,Wang Y Q. Trends of satellite derived chlorophyll-a (1997—2011) in the Bohai and Yellow Seas, China: effects of bathymetry on seasonal and inter-annual patterns[J]. Progress in Oceanography,2013,116:154-166. DOI: 10.1016/j.pocean.2013.07.003
    [25]
    张 珍. 三峡工程对长江水位和水沙通量影响的定量估算[D]. 上海: 华东师范大学, 2011.
    [26]
    沈焕庭,贺松林,潘定安,等. 长江河口最大浑浊带研究[J]. 地理学报,1992,59(5):472-478. DOI: 10.3321/j.issn:0375-5444.1992.05.011
    [27]
    黄江婵. 近50年东海海水中营养盐时空分布特征[J]. 青岛: 中国海洋大学,2011.
    [28]
    李 磊,王云龙,蒋 玫,等. 三峡工程蓄水后长江口溶解硅酸盐(DSi)、营养盐结构的变化特征及其生态影响分析[J]. 环境化学,2014,33(1):135-141. DOI: 10.7524/j.issn.0254-6108.2014.01.010
    [29]
    柴 超,俞志明,宋秀贤,等. 三峡工程蓄水前后长江口水域营养盐结构及限制特征[J]. 环境科学,2007,28(1):64-69. DOI: 10.3321/j.issn:0250-3301.2007.01.011
    [30]
    Zhang J. Nutrient elements in large Chinese estuaries[J]. Continental Shelf Research,1996,16(8):1023-1045. DOI: 10.1016/0278-4343(95)00055-0
    [31]
    周俊丽,刘征涛,孟 伟,等. 长江口营养盐浓度变化及分布特征[J]. 环境科学研究,2006,19(6):139-144. DOI: 10.3321/j.issn:1001-6929.2006.06.028
    [32]
    戚晓红. 中国近海部分典型海域磷的生物地球化学研究[D]. 青岛: 中国海洋大学, 2005.
    [33]
    Pan G,Krom M D,Zhang M Y,et al. Impact of suspended inorganic particles on Phosphorus cycling in the Yellow River (China)[J]. Environmental Science and Technology,2013:9685-9692.
    [34]
    徐 皓. 长江口营养盐的收支平衡及迁移模式[D]. 上海: 华东师范大学, 2013.
    [35]
    时 俊,刘鹏霞. 三峡蓄水前后长江口水域营养盐浓度变化特征和通量估算[J]. 海洋环境科学,2009,28(S1):16-20.
    [36]
    顾圣华. 年春末夏初枯水期间长江河口盐水入侵[J]. 华东师范大学学报(自然科学版),2014,4:154-162.
  • Related Articles

    [1]ZUO Shuhua, YANG Chunsong, FU Gui, XIE Hualiang. Variation of water and sediment flux and its influence on the Yangtze River Estuary[J]. Marine Geology Frontiers, 2022, 38(11): 56-64. DOI: 10.16028/j.1009-2722.2022.076
    [2]DUAN Yunying, PEI Shaofeng, LIAO Mingwen, ZHAI Shikui, YANG Shixiong, HE Lei, YE Siyuan. CHARACTERISTICS OF REE AND HEAVY METALS IN THE SURFICIAL SEDIMENTS OF LAIZHOU BAY, BOHAI SEA AND THEIR IMPLICATIONS FOR PROVENANCE[J]. Marine Geology Frontiers, 2021, 37(10): 8-24. DOI: 10.16028/j.1009-2722.2021.067
    [3]PENG Ziyuan, JIANG Xuezhong, HOU Lijun, HE Qing. Comparison of Suspended Sediment and Salinity Vertical Distributions Across the Turbidity Maximum Zoneinthe Yangtze Estuaryin Dry Seasons of 1982 and 2012[J]. Marine Geology Frontiers, 2020, 36(1): 7-18. DOI: 10.16028/j.1009-2722.2019.032
    [4]FAN Jiqing, YANG Shilun, SHI Benwei, YANG Haifei, WANG Haobin, ZHANG Saisai, WU Qiuyuan. IMPACTS OF STORM ON WATER AND SEDIMENT TRANSPORTATION THROUGH TIDAL CREEKS OF COASTAL WETLANDS: A CASE FROM EASTERN CHONGMING TIDAL FLAT, YANGTZE ESTUARY[J]. Marine Geology Frontiers, 2019, 35(10): 11-22. DOI: 10.16028/j.1009-2722.2019.10002
    [5]YANG Dongyuan, WANG Yonghong, LIU Feng, CAI Silong, HAN Zhiyuan, DU Jia. RECENT SYNCHRONOUS SPATIOTEMPORAL CHANGES IN WATER AND SEDIMENT DISCHARGES OF THE PEARL RIVER DELTA[J]. Marine Geology Frontiers, 2019, 35(3): 22-30. DOI: 10.16028/j.1009-2722.2019.03003
    [6]DANG Xianzhang, GAO Maosheng, ZHANG Liting, WANG Xiaogang, ZHANG Shaoxiong. EXPERIMENTAL STUDY ON THE MODEL OF FLOOD OVERTOPPING AND DAM BREAK OF A TAILING POND UNDER DIFFERENT DEPOSIT COMPACTNESS[J]. Marine Geology Frontiers, 2018, 34(9): 79-84. DOI: 10.16028/j.1009-2722.2018.09011
    [7]LI Song, WANG Houjie, ZHANG Yong, BI Naishuang, WU Xiao, HU Bangqi. VARIATION IN SEDIMENT LOAD AND GRAIN-SIZE UNDER THE INFLUENCE OF WATER AND SEDIMENT REGULATION SCHEME (WSRS) OF THE HUANGHE (YELLOW) RIVER[J]. Marine Geology Frontiers, 2015, 31(7): 20-27. DOI: 10.16028/j.1009-2722.2015.07003
    [8]FAN Baocang, WU Zhiqiang. COMBINED THREE-STEP METHOD FOR MULTIPLE ELIMINATION AND ITS APPLICATION TO DEEP WATER SEISMIC DATA PROCESSING[J]. Marine Geology Frontiers, 2013, 29(12): 58-64.
    [9]YANG Wenguang, ZHU Lidong, ZHANG Yan, KAN Aike. SEDIMENTARY EVOLUTION OF A DAMMED PALEOLAKE IN THE MAOXIAN BASIN ON THE UPPER REACH OF MINJIANG RIVER, SICHUAN, CHINA[J]. Marine Geology Frontiers, 2011, 27(5): 35-40.
    [10]CHEN Bin, LIU Jian, BAI Dapeng. VARIATION OF SUSPENDED SEDIMENT CONCENTRETION IN OFFSHORE YANGTZE ESTUARY[J]. Marine Geology Frontiers, 2011, 37(2): 39-44.
  • Cited by

    Periodical cited type(1)

    1. 刘钰,杨飞,张毅敏,高月香,张志伟,朱月明,孔明,赵远,钱文瀚. 滆湖入湖河口区叶绿素a时空变化特征及相关环境因子分析. 生态与农村环境学报. 2021(06): 733-739 .

    Other cited types(3)

Catalog

    Article views (238) PDF downloads (11) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return