Citation: | YU Lanfang, WU Xiao, BI Naishuang, LIU Jingpeng, WANG Houjie. TEMPORAL VARIATIONS OF THE CHLOROPHYLL-a CONCENTRATION OFF THE CHANGJIANG (YANGTZE) RIVER MOUTH AND RESPONSE TO THE THREE GORGES DAM[J]. Marine Geology Frontiers, 2020, 36(7): 56-63. DOI: 10.16028/j.1009-2722.2019.124 |
[1] |
Walling D E,Fang D. Recent trends in the suspended sediment loads of the world's rivers[J]. Global and Planetary Change,2003,39(1/2):111-126.
|
[2] |
Meybeck M,Vörösmarty C. Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene[J]. Comptes Rendus Geoscience,2005,337(1/2):107-123.
|
[3] |
Milliman J D,Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. Journal of Geology,1992,100(5):525-544. DOI: 10.1086/629606
|
[4] |
Gong G C,Chang J,Chiang K P,et al. Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the three Gorges Dam[J]. Geophysical Research Letters,2006,33(7):684-696.
|
[5] |
Wang H,Saito Y,Zhang Y,et al. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia[J]. Earth-Science Reviews,2011,108(1/2):80-100.
|
[6] |
周伟华,袁翔城,霍文毅,等. 长江口邻域叶绿素 a 和初级生产力的分布[J]. 海洋学报(中文版),2004,26(3):143-150.
|
[7] |
洪官林. 长江口及邻近海域叶绿素的光学特性及其遥感应用[D]. 上海: 华东师范大学, 2011.
|
[8] |
Corine G,Amo Y D,Sautour B,et al. Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem (Arcachon Bay, France)[J]. Estuarine Coastal & Shelf Science,2008,76(3):642-656.
|
[9] |
Cloern J E. Our evolving conceptual model of the coastal eutrophication problem[J]. Marine Ecology Progress,2001,210:223-253. DOI: 10.3354/meps210223
|
[10] |
Wu X,Duan H Bi N,Yuan P,et al. Interannual and seasonal variation of chlorophyll-a off the Yellow River Mouth (1997—2012): dominance of river inputs and coastal dynamics[J]. Estuarine, Coastal and Shelf Science,2016,183:402-412. DOI: 10.1016/j.ecss.2016.08.038
|
[11] |
马 颖,李琼芳,王鸿杰,等. 人类活动对长江干流水沙关系的影响的分析[J]. 水文,2008,28(2):38-42. DOI: 10.3969/j.issn.1000-0852.2008.02.010
|
[12] |
朱鉴远. 长江沙量变化和减沙途径探讨[J]. 水力发电学报,2000(3):38-48. DOI: 10.3969/j.issn.1003-1243.2000.03.005
|
[13] |
Yang S L,Zhao Q Y,Belkin M. Temporal variation in the sediment load of the Yangtze River and the influences of the human activities[J]. Journal of Hydrology,2002,263(1/4):56-71.
|
[14] |
张德兵,何素萍,胡国祥,等. 三峡水库蓄水后长江中游干流来水量变化分析[J]. 人民长江,2013,44(1):1-3, 17. DOI: 10.3969/j.issn.1001-4179.2013.01.002
|
[15] |
陈吉余. 21世纪的长江河口初探[M]. 北京: 海洋出版社, 2009.
|
[16] |
孔凡洲. 长江口赤潮区浮游植物的粒级结构、种类组成和色素分析[D]. 青岛: 中国科学院研究生院(海洋研究所), 2012.
|
[17] |
李玲玲,于志刚,姚庆祯,等. 长江口海域营养盐的形态和分布特征[J]. 水生态学杂志,2009,30(2):15-20.
|
[18] |
王保栋. 长江冲淡水的扩展及其营养盐的输送[J]. 黄渤海海洋学报,1998,16(2):41-47.
|
[19] |
褚忠信,翟世奎,章 磊,等. 三峡水库2003年蓄水对长江悬沙中值粒径的影响[J]. 海洋湖沼通报,2007(3):23-28. DOI: 10.3969/j.issn.1003-6482.2007.03.004
|
[20] |
O'Reilly J E, Maritorena S, Siegel D A, et al. Ocean color chlorophyll-a algorithms for SeaWiFS, OC2 and OC4: version 4[C]//Hooker S B, Firestone E R. NASA Technical Memorandum. Greenbelt, Maryland: NASA-GSFC(Chapter 2), 2000, 11: 9-23.
|
[21] |
Zhang C Y,Hu C M,Shang S L,et al. Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China[J]. Remote Sensing of Environment,2006,102(3/4):250-263.
|
[22] |
张 瑞,汪亚平,潘少明. 长江大通水文站径流量的时间系列分析[J]. 南京大学学报(自然科学版),2006,42(4):423-434. DOI: 10.3321/j.issn:0469-5097.2006.04.012
|
[23] |
中华人民共和国水利部. 中国河流泥沙公报[M]. 北京: 中国水利水电出版社, 1997—2012.
|
[24] |
Liu D Y,Wang Y Q. Trends of satellite derived chlorophyll-a (1997—2011) in the Bohai and Yellow Seas, China: effects of bathymetry on seasonal and inter-annual patterns[J]. Progress in Oceanography,2013,116:154-166. DOI: 10.1016/j.pocean.2013.07.003
|
[25] |
张 珍. 三峡工程对长江水位和水沙通量影响的定量估算[D]. 上海: 华东师范大学, 2011.
|
[26] |
沈焕庭,贺松林,潘定安,等. 长江河口最大浑浊带研究[J]. 地理学报,1992,59(5):472-478. DOI: 10.3321/j.issn:0375-5444.1992.05.011
|
[27] |
黄江婵. 近50年东海海水中营养盐时空分布特征[J]. 青岛: 中国海洋大学,2011.
|
[28] |
李 磊,王云龙,蒋 玫,等. 三峡工程蓄水后长江口溶解硅酸盐(DSi)、营养盐结构的变化特征及其生态影响分析[J]. 环境化学,2014,33(1):135-141. DOI: 10.7524/j.issn.0254-6108.2014.01.010
|
[29] |
柴 超,俞志明,宋秀贤,等. 三峡工程蓄水前后长江口水域营养盐结构及限制特征[J]. 环境科学,2007,28(1):64-69. DOI: 10.3321/j.issn:0250-3301.2007.01.011
|
[30] |
Zhang J. Nutrient elements in large Chinese estuaries[J]. Continental Shelf Research,1996,16(8):1023-1045. DOI: 10.1016/0278-4343(95)00055-0
|
[31] |
周俊丽,刘征涛,孟 伟,等. 长江口营养盐浓度变化及分布特征[J]. 环境科学研究,2006,19(6):139-144. DOI: 10.3321/j.issn:1001-6929.2006.06.028
|
[32] |
戚晓红. 中国近海部分典型海域磷的生物地球化学研究[D]. 青岛: 中国海洋大学, 2005.
|
[33] |
Pan G,Krom M D,Zhang M Y,et al. Impact of suspended inorganic particles on Phosphorus cycling in the Yellow River (China)[J]. Environmental Science and Technology,2013:9685-9692.
|
[34] |
徐 皓. 长江口营养盐的收支平衡及迁移模式[D]. 上海: 华东师范大学, 2013.
|
[35] |
时 俊,刘鹏霞. 三峡蓄水前后长江口水域营养盐浓度变化特征和通量估算[J]. 海洋环境科学,2009,28(S1):16-20.
|
[36] |
顾圣华. 年春末夏初枯水期间长江河口盐水入侵[J]. 华东师范大学学报(自然科学版),2014,4:154-162.
|
1. |
刘钰,杨飞,张毅敏,高月香,张志伟,朱月明,孔明,赵远,钱文瀚. 滆湖入湖河口区叶绿素a时空变化特征及相关环境因子分析. 生态与农村环境学报. 2021(06): 733-739 .
![]() |