JIANG Ruijie, CHENG Peng, GAO Jianhua, WANG Aijun. IMPACTS OF MANGROVE ON THE DYNAMIC PROCESS OF BOTTOM BOUNDARY LAYER[J]. Marine Geology Frontiers, 2020, 36(4): 37-44. DOI: 10.16028/j.1009-2722.2019.108
Citation: JIANG Ruijie, CHENG Peng, GAO Jianhua, WANG Aijun. IMPACTS OF MANGROVE ON THE DYNAMIC PROCESS OF BOTTOM BOUNDARY LAYER[J]. Marine Geology Frontiers, 2020, 36(4): 37-44. DOI: 10.16028/j.1009-2722.2019.108

IMPACTS OF MANGROVE ON THE DYNAMIC PROCESS OF BOTTOM BOUNDARY LAYER

More Information
  • Received Date: May 09, 2019
  • As an important coastal wetland plant, mangrove and its biogeomorphologic process are crucial for coast protection. In order to study the sediment transport mechanism near the bottom of a mangrove, hydrodynamic observations were carried out in the Zhangjiang Estuary, Fujian Province; and the hydrodynamics and sediment transport between the bare flat and mangrove were studied.The results indicate that tidal current speed was obviously decreased and deflected by mangrove, and prominent sediment deposition and resuspension observed at the bare flat, and sediment deposition predominates the mangrove. It means that the mangrove has the capability to trap sediment from movement.Further more, the calculation of the transport equation also shows that the sediments on the bare flat were transported towards the mangrove through tidal creeks, and then intercepted by mangrove, implying that the mangrove exerts significant effect on siltation through reducing water movement and plant adsorption.
  • [1]
    Moller I. Bio-physical linkages in coastal wetlands implications for coastal protection[J]. Jubilee Conference Proceedings, 2012: 51-60.
    [2]
    Morris J T, Sundareshwar P V, Nietch C T, et al.Responses of coastal wetlands to rising sea level[J]. Ecology, 2002, 83(10):2869-2877. DOI: 10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2
    [3]
    Frey R W, Basan P B. Coastal salt marshes[J]. Coastal Sedimentary Environment, 1985: 225-301. http://d.old.wanfangdata.com.cn/Periodical/stxb200509024
    [4]
    杨世伦, 陈吉余.试论植物在潮滩发育演变中的作用[J].海洋与湖沼, 1994, 25(6):631-635. DOI: 10.3321/j.issn:0029-814X.1994.06.010
    [5]
    Yang S L. The role of scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary[J]. Estuarine, Coastal and Shelf Science, 1998, 47(2):227-233. DOI: 10.1006/ecss.1998.0348
    [6]
    王爱军, 高抒, 贾建军.互花米草对江苏潮滩沉积和地貌演化的影响[J].海洋学报(中文版), 2006, 28(1):92-99. DOI: 10.3321/j.issn:0253-4193.2006.01.013
    [7]
    张乔民, 张叶春.华南红树林海岸生物地貌过程研究[J].第四纪研究, 1997(4):344-353. DOI: 10.3321/j.issn:1001-7410.1997.04.008
    [8]
    林鹏.中国红树林湿地与生态工程的几个问题[J].中国工程科学, 2003, 5(6): 33-38. DOI: 10.3969/j.issn.1009-1742.2003.06.005
    [9]
    谭晓林, 张乔民.红树林潮滩沉积速率及海平面上升对我国红树林的影响[J].海洋通报, 1997, 16(4):29-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700250321
    [10]
    杨世伦, 时钟, 赵庆英.长江口潮沼植物对动力沉积过程的影响[J].海洋学报(中文版), 2001, 23(4):75-80. DOI: 10.3321/j.issn:0253-4193.2001.04.009
    [11]
    Mazda Y, Okada S, Kobashi D. Tidal flow mangrove forests and the eddy viscosity[J]. Journal of the School of Marine Science and Technology, 2004(1): 29-35.
    [12]
    Bouma T J, Vries M B D, Low E, et al. Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations[J]. Hydrobiologia, 2005, 540(1/3): 259-274.
    [13]
    Bao T Q. Effect of mangrove forest structures on wave attenuation in coastal Vietnam[J]. Oceanologia, 2011, 53(3): 807-818. DOI: 10.5697/oc.53-3.807
    [14]
    Chen Y, Li Y, Cai T, et al. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries[J]. Earth Surface Processes and Landforms, 2016, 41(13): 1967-1979. DOI: 10.1002/esp.3964
    [15]
    李屹, 陈一宁, 李炎.红树林与互花米草盐沼交界区空间格局变化规律的遥感分析[J].海洋通报, 2017, 36(3):348-360. http://d.old.wanfangdata.com.cn/Periodical/hytb201703014
    [16]
    刘红, 何青, 王元叶, 等.长江口浑浊带海域OBS标定的实验研究[J].泥沙研究, 2006(5): 52-58. DOI: 10.3321/j.issn:0468-155X.2006.05.009
    [17]
    Downing J.Twenty-five years with OBS sensors: the good, the bad, and the ugly[J]. Continental Shelf Research, 2006, 26(17/18):2299-2318.
    [18]
    蒋东辉, 高抒.海洋环境沉积物输运研究进展[J].地球科学进展, 2003, 51(1):100-108. DOI: 10.3321/j.issn:1001-8166.2003.01.014
    [19]
    Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, 1851, 8:8-106.
    [20]
    李东义, 陈坚, 汪亚平, 等.近底部沉积动力过程的高分辨率观测与分析[J].沉积学报, 2014, 32(2):278-289. http://d.old.wanfangdata.com.cn/Periodical/cjxb201402011
    [21]
    Neumeier U, Amos C L.The influence of vegetation on turbulence and flow velocities in European salt-marshes[J].Sedimentology, 2006, 53(2): 259-277. DOI: 10.1111/j.1365-3091.2006.00772.x
    [22]
    李华, 杨世伦.潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J].地球科学进展, 2007, 55(6): 583-591. DOI: 10.3321/j.issn:1001-8166.2007.06.004
    [23]
    李占海, 高抒, 陈沈良.江苏大丰潮滩潮流边界层特征研究[J].海洋工程, 2007, 23(3):53-60. DOI: 10.3969/j.issn.1005-9865.2007.03.008
    [24]
    Ke X K, Collins M B, Poulos S E. Velocity structure and sea bed roughness associated with intertidal(sand and mud)flats and saltmarshes of the Wash, U.K.[J]. Journal of Coastal Research, 1994, 10(3):702-715.
    [25]
    Leonard L A, Luther M E. Flow hydrodynamics in tidal marsh canopies[J]. Limnology and Oceanography, 1995, 40(8):1474-1484. DOI: 10.4319/lo.1995.40.8.1474
    [26]
    Davidson-Arnott R G D, van Proosdij D, Ollerhead J, et al.Hydrodynamics and sedimentation in salt marshes:examples from a macrotidal marsh, Bay of Fundy[J]. Geomorphology, 2002, 48:209-231. DOI: 10.1016/S0169-555X(02)00182-4
    [27]
    Lawrence D S L, Allen J R L, Havelock G M. Salt marsh morphodynamics:an investigation of tidal flows and marsh channel equilibrium[J]. Journal of Coastal Research, 2004, 20(1):301-316. DOI: 10.2112-1551-5036(2004)20%5b301-SMMAIO%5d2.0.CO%3b2/
    [28]
    Maa J P Y, Sanford L P, Halka J P.Sediment resuspension characteristics in Baltimore Harbor, Maryland[J].Marine Geology, 1998:146(1/4):137-145. DOI: 10.1016-S0025-3227(97)00120-5/
    [29]
    Sanford L P, Maa J P Y. A unified erosion formulation for fine sediments[J].Marine Geology, 2001, 179(1/2) : 9-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=565415855dc9bd2a0b072eefe09bc213
    [30]
    李华, 杨世伦.潮间带盐沼植物黏附悬浮颗粒物的差异性研究[J].海洋学报(中文版), 2010, 32(1):114-119. http://d.old.wanfangdata.com.cn/Periodical/hyxb201001011
  • Related Articles

    [1]FENG Yongcai, HAO Liancheng, HU Yanbin, CHU Hongxian, LI Jialin, YUAN Jidong, HUANG Xing, CHEN Xiaori, WANG Chao. Characterization of grain size distribution of sediments and transport trend analysis in Caofeidian sea area, Bohai Bay[J]. Marine Geology Frontiers, 2024, 40(11): 57-69. DOI: 10.16028/j.1009-2722.2024.089
    [2]GAN Shuangqing, ZHU Longhai, ZHANG Likui, SONG Yan, HU Rijun, BAI Xing, LIN Chaoran, XIE Bo. Transport and control factors of suspended sediment in Penglai offshore area in summer[J]. Marine Geology Frontiers, 2023, 39(12): 12-25. DOI: 10.16028/j.1009-2722.2022.238
    [3]HUANGFU Xuerui, LI Yi, HU Rijun, ZHU Longhai, LIU Bo, YIN Yanjun. TEMPORAL AND SPATIAL VARIATION OF SUSPENDED SEDIMENT CONCENTRATION IN THE NEARSHORE WATERS OF WESTERN YANTAI AND ITS TRANSPORT CHARACTERISTICS IN WINTER[J]. Marine Geology Frontiers, 2020, 36(5): 22-33. DOI: 10.16028/j.1009-2722.2019.107
    [4]LIU Cheng, HU Rijun, ZHU Longhai, YUAN Xiaodong. DYNAMIC ENVIRONMENT DIVISION AND SEDIMENT TRANSPORT TREND IN THE AREA OFF MIAODAO ISLANDS[J]. Marine Geology Frontiers, 2018, 34(8): 24-33. DOI: 10.16028/j.1009-2722.2018.08004
    [5]JIANG Rui, WU Jianzheng, ZHU Longhai, HU Rijun, YUE Nana. THE CONCENTRATION CHANGE AND TRANSPORT MECHANISM OF SUSPENDED SEDIMENTS IN SOUTHWESTERN LAIZHOU BAY[J]. Marine Geology Frontiers, 2017, 33(9): 25-32. DOI: 10.16028/j.1009-2722.2017.09004
    [6]ZHANG Zhuo, WU Jianzheng, ZHU Longhai, HU Rijun. CHARACTERISTICS OF SUSPENDED SEDIMENT TRANSPORT OF COASTAL WATERS IN SOUTH WENDENG[J]. Marine Geology Frontiers, 2017, 33(9): 13-17. DOI: 10.16028/j.1009-2722.2017.09002
    [7]ZANG Zhengchen, WANG Houjie, XUE Zuo, BI Naishuang, WU Xiao, ZHANG Yong. TEMPORAL AND SPATIAL VARIABILITY OF NEARSHORE FRONTS IN THE YELLOW SEA AND ITS INFLUENCE ON SEDIMENT TRANSPORT AND DEPOSITION[J]. Marine Geology Frontiers, 2015, 31(7): 1-10. DOI: 10.16028/j.1009-2722.2015.07001
    [8]MAN Xiao, WU Jianzheng, HU Rijun, ZHU Longhai. SURFACE SEDIMENT DISTRIBUTION PATTERN AND TRANSPORT TREND OF THE JIULONG BAY, WEIHAI[J]. Marine Geology Frontiers, 2013, 29(9): 9-14.
    [9]YIN Dongxiao, WU Jianzheng, HU Rijun, ZHU Longhai. RECENT EVOLUTION AND SEDIMENT TRANSPORTING PATTERNS OF THE DENGZHOU SHOAL[J]. Marine Geology Frontiers, 2013, 29(8): 25-32.
    [10]YOU Haitao, WANG Lixian. BIOGENETIC SILICA IN LAKE SEDIMENTS: DETERMINATION AND PALEOCLIMATE SIGNIFICANCE[J]. Marine Geology Frontiers, 2012, 28(8): 14-19.
  • Cited by

    Periodical cited type(5)

    1. 艾熙航,辛琨,曾书军. 滨海湿地潮沟演变及其生态效应研究进展. 湿地科学. 2024(04): 603-616 .
    2. 黄祖明,戴志军,周晓妍,龙楚琪,冯炳斌,罗杰骏,喜扬洋. 北部湾防城港东湾白骨壤潮滩近底层动力响应台风作用的耗散过程. 海洋工程. 2023(02): 107-118 .
    3. 黄祖明,周晓妍,戴志军,车志伟. 桐花树红树林潮滩近底层悬沙浓度垂向剖面变化特征分析. 热带海洋学报. 2022(04): 38-50 .
    4. 王日明,戴志军,黄鹄,龙楚琪,梁喜幸,黎树式. 南流江河口桐花树生物动力地貌过程研究. 海洋学报. 2021(09): 102-114 .
    5. 石彦强. 约代尔旋回形成机制之我见——以华北克拉通晚古生代煤系沉积为例. 地质论评. 2021(05): 1197-1206 .

    Other cited types(1)

Catalog

    Article views (714) PDF downloads (76) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return