Gong Jianming, Liao Jing, Yang Chuansheng, Cheng Haiyan, Sun Jing, Wang Jianqiang, He Yongjun, Chen Zhiqiang, Tian Ruicong. THE RELATIONSHIP BETWEEN AUTHIGENIC CARBONATE AND GAS HYDRATES IN MAKRAN ACCRETIONARY WEDGE: ON THE BASIS OF M74/3 CRUISE REPORT OF " R/V METEOR" IN 2007[J]. Marine Geology Frontiers, 2017, 33(3): 20-26. DOI: 10.16028/j.1009-2722.2017.03004
Citation: Gong Jianming, Liao Jing, Yang Chuansheng, Cheng Haiyan, Sun Jing, Wang Jianqiang, He Yongjun, Chen Zhiqiang, Tian Ruicong. THE RELATIONSHIP BETWEEN AUTHIGENIC CARBONATE AND GAS HYDRATES IN MAKRAN ACCRETIONARY WEDGE: ON THE BASIS OF M74/3 CRUISE REPORT OF " R/V METEOR" IN 2007[J]. Marine Geology Frontiers, 2017, 33(3): 20-26. DOI: 10.16028/j.1009-2722.2017.03004

THE RELATIONSHIP BETWEEN AUTHIGENIC CARBONATE AND GAS HYDRATES IN MAKRAN ACCRETIONARY WEDGE: ON THE BASIS OF M74/3 CRUISE REPORT OF " R/V METEOR" IN 2007

More Information
  • Received Date: July 24, 2016
  • Available Online: September 14, 2020
  • In order to reveal the relationship between authigenic carbonate and gas hydrate in the Makran accretionary wedge, we hereby summarized all the data from the M74/3 cruise of "R/V Meteor" in 2007. The data shows that authigenic carbonate rock has no strict corresponding relationship with gas hydrate. In the sea area where methane flux was very high (such as the No. 5 plume site where water is 2 900 m deep, plume 1 800 m high, with gas hydrates of tubular structure), authigenic carbonate usually does not occur on the seabed or shallow sediments where gas hydrate usually exists. However, in the sea area where methane flux is high (such as, at the No. 2 plume site where water is 1 100 m deep, plume 170 m high, with gas hydrates of vesicular structure), and if there is a small amount of authigenic carbonate on the seabed or in the shallow sediments, then hydrate usually occurs; if there is great amount of authigenetic carbonate on seabed or in shallow sediments, then there is usually no hydrate occurred. Based on the current data, it is uncertain whether there is hydrate in deep sediments. In the sea area where methane flux is very low (such as at MUC-4site, there are no plumes), sediments show clear lamination, there is neither authigenic carbonate nor hydrate.
  • [1]
    Smith G L. The structure, fluid distribution and earthquake potential of the Makran subduction zone, Pakistan [D]. Southampton, Great Britain : University of Southampton, 2013. https: //www.researchgate.net/publication/299464367_The_structure_fluid_distribution_and_earthquake_potential_of_the_Makran_Subduction_Zone_Pakistan
    [2]
    Bohrmann G, Bahr A, Brinkmann F, et al. R/V Meteor Cruise Report M74/3 Cold Seeps of the Makran Subduction Zone(Continental Margin of Pakistan) M74, Leg3 Fujairah-Male 30 October-28 November, 2007[R].
    [3]
    Paull C K, Ussler W Ⅲ. Re-evaluating the significance of seafloor accumulations of methane-derived carbonates: seepage or erosion indicators [C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, 2008.
    [4]
    von Rad U, Rosch H, Berner U, et al. Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan[J].Marine Geology, 1996, 136(1/2): 55-57. http://cn.bing.com/academic/profile?id=6c095526888c8eb0c5784297f1e9b426&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Himmler T, Birgel D, Bayon G, et al. Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane[J].Chemical Geology, 2015, 415(15): 102-117. http://cn.bing.com/academic/profile?id=6147402a94cf310019b1f40d3182f438&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Greinert J, Bohrmann G, Suess E. Gas Hydrate-associated carbonates and methane-venting at Hydrate Ridge: Classification, distribution and origin of authigenic lithologies[M]//Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution and Detection.Washington, D C : American Geophysical Union, 2001: 99-114.
    [7]
    Naehr T, Rodriguez N, Bohrmann G, et al. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir [C]//Proceedings of the Ocean Drilling Program, 2000.
    [8]
    Sassen R, Roberts H H, Carney R, et al. Free hydrocarbon gas, gas hydrate and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: Relation to microbial processes[J].Chemical Geology, 2004, 205(3): 195-217. http://cn.bing.com/academic/profile?id=a922f069119d388418b48ccea09a8c3d&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    陈忠, 颜文, 陈木宏, 等.南海北部大陆坡冷泉碳酸盐结核的发现:海底天然气渗漏活动的新证据[J].科学通报, 2006, 51(9):1065-1072. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200609011.htm
    [10]
    陈忠, 杨华平, 黄奇瑜, 等.南海东沙西南海域冷泉碳酸盐岩特征及其意义[J].现代地质, 2008, 22(3): 382-389. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200803006
    [11]
    冯东, 陈多福, 苏正, 等.海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展[J].海洋地质与第四纪地质, 2006, 26(3):129-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200603018
    [12]
    邬黛黛, 吴能友, 叶瑛, 等.南海北部陆坡九龙甲烷礁冷泉碳酸盐岩沉积岩石学特征[J].热带海洋学报, 2009, 28(3):74-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200903012
    [13]
    邬黛黛, 吴能友, 张美, 等.东沙海域SMI与甲烷通量的关系及对水合物的指示[J].地球科学——中国地质大学学报, 2013, 38(6):1309-1320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201306014
    [14]
    张光学, 沙志彬, 陈芳, 等.南海东北部天然气水合物藏地质演化过程[J].地学前缘(中国地质大学(北京); 北京大学), 2017, 24:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201704002
    [15]
    徐兆凯, 崔镇勇, 林东日, 等.日本海西部大陆坡自生碳酸盐的特征与成因[J].海洋地质与第四纪地质, 2009, 29(2):41-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200902006
  • Related Articles

    [1]LIU Bin, LI Keliang, DENG Xiguang, HUANG Jianyu, ZHOU Dasen, GUO Wu. High-resolution seismic data processing and preliminary results for gas hydrates in the Makran subduction zone[J]. Marine Geology Frontiers, 2022, 38(1): 80-84. DOI: 10.16028/j.1009-2722.2020.098
    [2]WAN Tinghui, WANG Jingli, SHA Zhibin, HE Huice, LI Zhanzhao, YU Yanjiang, LIANG Qianyong, HUANG Ning. TOUGH+MULTILATERAL WELL MODEL CONSTRUCTION BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE[J]. Marine Geology Frontiers, 2021, 37(11): 60-69. DOI: 10.16028/j.1009-2722.2020.166
    [3]WAN Tinghui, LI Zhanzhao, AVIS John, WANG Jingli, LU Cheng, MA Chao, LI Keliang. HORIZONTAL WELLBORE TRAJECTORY MODELING BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE PRODUCTION[J]. Marine Geology Frontiers, 2020, 36(8): 74-80. DOI: 10.16028/j.1009-2722.2019.190
    [4]MENG Ming, GONG Jianming, LIAO Jing. DIFFERENCE IN GAS SOURCES FOR OFFSHORE AND ONSHORE MUD VOLCANOES IN MAKRAN ACCRETIONARY WEDGE[J]. Marine Geology Frontiers, 2020, 36(5): 43-48. DOI: 10.16028/j.1009-2722.2019.157
    [5]GONG Jianming, LIAO Jing, Muhammad Khalid, LIANG Jie, CHEN Jianwen, CHENG Haiyan, MENG Ming. PRELIMINARY STUDY ON THE OIL AND GAS EXPLORATIONTARGETS IN OFFSHORE PAKISTAN[J]. Marine Geology Frontiers, 2019, 35(11): 1-6. DOI: 10.16028/j.1009-2722.2019.11001
    [7]GONG Jianming, LIAO Jing, SUN Jing, YANG Chuansheng, WANG Jianqiang, HE Yongjun, TIAN Ruicong, CHENG Qingsong, CHEN Zhiqiang. FACTORS CONTROLLING GAS HYDRATE ACCUMULATION IN MAKRAN ACCRETIONARY WEDGE OFF PAKISTAN[J]. Marine Geology Frontiers, 2016, 32(12): 10-15. DOI: 10.16028/j.1009-2722.2016.12002
    [8]LIU Yushan, ZHU Yuhai, WU Bihao. RECENT STATUS OF MARINE GAS HYDRATE EXPLORATION AND PRODUCTION[J]. Marine Geology Frontiers, 2013, 29(6): 23-31.
    [9]TANG Tao, XIE Yingming, LIU Daoping. A REVIEW ON THE STUDY OF MICROSTRUCTURE FOR HYDROGEN STORAGE IN HYDRATE[J]. Marine Geology Frontiers, 2011, 27(11): 14-17.
    [10]CAI Feng, YAN Guijing, LIANG Jie, LI Qing, DONG Gang. THE RELATIONSHIP BETWEEN SPECIAL GEOLOGICAL BODIES AND HYDRATE FORMATION AT CONTINENTAL MARGIN[J]. Marine Geology Frontiers, 2011, 27(6): 11-15.

Catalog

    Article views (182) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return