留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示

熊伟 梅西 韩宗珠 王中波 张勇

熊 伟,梅 西,韩宗珠,等. 东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示[J]. 海洋地质前沿,2020,36(10):22-31 doi:  10.16028/j.1009-2722.2020.109
引用本文: 熊 伟,梅 西,韩宗珠,等. 东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示[J]. 海洋地质前沿,2020,36(10):22-31 doi:  10.16028/j.1009-2722.2020.109
WEI XIONG, Xi MEI, Zongzhu HAN, Zhongbo WANG, Yong ZHANG. CHARACTERISTICS OF N-ALKANES IN THE SURFACE SEDIMENTS OF THE EAST CHINA SEA AND THEIR IMPLICATIONS FOR THE DISTRIBUTION OF TERRIGENOUS ORGANIC MATTER[J]. Marine Geology Frontiers, 2020, 36(10): 22-31. doi: 10.16028/j.1009-2722.2020.109
Citation: WEI XIONG, Xi MEI, Zongzhu HAN, Zhongbo WANG, Yong ZHANG. CHARACTERISTICS OF N-ALKANES IN THE SURFACE SEDIMENTS OF THE EAST CHINA SEA AND THEIR IMPLICATIONS FOR THE DISTRIBUTION OF TERRIGENOUS ORGANIC MATTER[J]. Marine Geology Frontiers, 2020, 36(10): 22-31. doi: 10.16028/j.1009-2722.2020.109

东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示

doi: 10.16028/j.1009-2722.2020.109
基金项目: 中国地质调查局项目(DD20160137,DD20190208,GZH20140021)
详细信息
    作者简介:

    熊 伟(1996—),男,在读硕士,主要从事海洋地质方面的研究工作. E-mail:807181333@qq.com

    通讯作者:

    梅 西(1981—),男,博士,高级工程师,主要从事海洋地球化学方面的研究工作. E-mail:meixi@mail.cgs.gov.cn

  • 中图分类号: P736

CHARACTERISTICS OF N-ALKANES IN THE SURFACE SEDIMENTS OF THE EAST CHINA SEA AND THEIR IMPLICATIONS FOR THE DISTRIBUTION OF TERRIGENOUS ORGANIC MATTER

  • 摘要: 东海埋藏了通过长江、黄河以及台湾河流进入的巨量陆源有机碳,是重要的有机碳碳“汇”。识别东海沉积物中陆源有机碳的分布特征和搬运过程,是东海碳通量研究不可或缺的内容。目前关于陆源有机碳在东海沉积物中分布的研究区域主要集中在河口、内陆架以及水深<120 m的中、外陆架地区;针对东海外陆架和冲绳海槽陆坡的研究较少,仅少量研究对东海陆架与冲绳海槽南部沉积物的陆源有机碳特征进行了对比分析,对陆源有机碳的“源-汇”过程、分布特征、沉积动力机制等诸多问题尚缺乏系统性的认识。通过对东海外陆架-陆坡-冲绳海槽80个表层沉积物的长链正构烷烃含量及组成特征进行分析,并结合粒度、总有机碳(TOC)及稳定碳同位素(δ13C)指标,讨论了研究区沉积物中陆源有机碳的含量及运移分布。结果显示,δ13C和(ΣC27+C29+C31 n-alkane)/TOC指示的陆源有机碳相对含量在研究区变化范围很大,从外陆架到海槽,有先降低后增高的变化趋势,陆源有机碳在陆坡以及海槽的一些特定区域选择性的大量沉积。东海内陆架的陆源有机碳在横穿东海陆架后,可以在陆坡处通过搬运-沉积-再悬浮-再搬运的方式运移至冲绳海槽沉积。长链正构烷碳优势指数(CPI)的结果表明,来自东海内陆架的陆源有机碳主要在冲绳海槽28.5°—30°N范围内沉积,28.5°N以南的陆源有机质主要受到台湾物质的影响,而30°N以北沉积物中的陆源有机质主要是来源于黄河和日本岛。
  • 图  1  取样站位(红色虚线是陆架、陆坡和海槽样品的界线)

    Figure  1.  Locations of the sampling sites (the red dashed lines are the boundary of the shelf,slope and trough samples)

    图  2  研究区表层沉积物粒度(a)、TOC(b)和δ13C(c)平面分布图

    Figure  2.  The distribution of grain-size(a),TOC(b)and δ13C(c)of surface sediment in the study area

    图  3  表层沉积物平均粒径(Mz)和TOC(a)、水深和TOC(b)、Mz和δ13C(c)的相关性分析

    Figure  3.  Correlations between grain-size vs. TOC(a),water depth vs.TOC(b)and grain-size vs. δ13C(c)of surface sediments

    图  4  典型站位正构烷烃组成特征分布

    Figure  4.  The n-alkane distribution in typical stations

    图  5  表层沉积物TOM含量(a)、长链正构烷烃CPI指数(b)平面分布

    Figure  5.  The distribution of TOM content(a),long chain normal alkane CPI index(b)of surface sediments.

    图  6  陆源有机碳含量平面分布

    Figure  6.  Surface distribution of terrestrial organic carbon

    图  7  沉积物CPI值变化

    Figure  7.  Changes in sediment CPI value

  • [1] Hedges J I,Keil R G. Sedimentary organic matter preservation:an assessment and speculative synthesis[J]. Marine Chemistry,1995,49(2/3):81-115.
    [2] Schlesinger W H,Melack J M. Transport of organic carbon in the world's rivers[J]. Tellus,1981,33(2):172-187. doi:  10.3402/tellusa.v33i2.10706
    [3] Milliman J D,Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology,1983,91(1):1-21. doi:  10.1086/628741
    [4] 段晓勇,印 萍,刘 金,等. 中国东部近海现代沉积环境[J]. 海洋地质与第四纪地质,2019,39(2):14-20.
    [5] Milliman J D,Shen H T,Yang Z S,et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research,1985,4(1/2):37-45.
    [6] Kao S J,Liu K K. Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes[J]. Global Biogeochemical Cycles,2000,14(1):189-198. doi:  10.1029/1999GB900079
    [7] Chen C T A,Kandasamy S,Chang Y P,et al. Geochemical evidence of the indirect pathway of terrestrial particulate material transport to the Okinawa Trough[J]. Quaternary International,2017,441:51-61. doi:  10.1016/j.quaint.2016.08.006
    [8] Hu L M,Shi X F,Lin T,et al. Perylene in surface sediments from the estuarine-inner shelf of the East China Sea:a potential indicator to assess the sediment footprint of large river influence[J]. Continental Shelf Research,2014,90:142-150. doi:  10.1016/j.csr.2014.04.014
    [9] Hu L M,Shi X F,Yu Z G,et al. Distribution of sedimentary organic matter in estuarine–inner shelf regions of the East China Sea:implications for hydrodynamic forces and anthropogenic impact[J]. Marine Chemistry,2012,142/144:29-40. doi:  10.1016/j.marchem.2012.08.004
    [10] Wu Y,Zhang J,Liu S M,et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine,Coastal and Shelf Science,2007,71(1/2):13-25.
    [11] Xing L,Zhang H L,Yuan Z N,et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research,2011,31(10):1106-1115. doi:  10.1016/j.csr.2011.04.003
    [12] Zhang H L,Xing L,Zhao M X. Origins of terrestrial organic matter in surface sediments of the East China Sea Shelf[J]. Journal of Ocean University of China,2017,16(5):793-802. doi:  10.1007/s11802-017-3216-9
    [13] Zhu C,Xue B,Pan J M,et al. The dispersal of sedimentary terrestrial organic matter in the East China Sea (ECS) as revealed by biomarkers and hydro-chemical characteristics[J]. Organic Geochemistry,2008,39(8):952-957. doi:  10.1016/j.orggeochem.2008.04.024
    [14] Oguri K,Matsumoto E,Yamada M,et al. Sediment accumulation rates and budgets of depositing particles of the East China Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2003,50(2):513-528. doi:  10.1016/S0967-0645(02)00465-4
    [15] Li Y H. Material Exchange between the East China Sea and the Kuroshio Current[J]. Terrestrial,Atmospheric and Oceanic Sciences,1994,5(4):625-631. doi:  10.3319/TAO.1994.5.4.625(O)
    [16] Peng T H,Hung J J,Wanninkhof R,et al. Carbon budget in the East China Sea in spring[J]. Tellus B:Chemical and Physical Meteorology,1999,51(2):531-540. doi:  10.3402/tellusb.v51i2.16337
    [17] Tsunogai S,Watanabe S,Sato T. Is there a "continental shelf pump" for the absorption of atmospheric CO2?[J]. Tellus B:Chemical and Physical Meteorology,1999,51(3):701-712. doi:  10.3402/tellusb.v51i3.16468
    [18] Wang S L,Chen C T A,Hong G H,et al. Carbon dioxide and related parameters in the East China Sea[J]. Continental Shelf Research,2000,20(4/5):525-544.
    [19] Chen C T A,Wang S L. Carbon dioxide and related parameters in the East China Sea[J]. Journal of Geophysical Research:Atmospheres,1999,104(20):675-686.
    [20] Kao S J,Lin F J,Liu K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2003,50(6/7):1203-1217.
    [21] Katayama H,Watanabe Y. The Huanghe and Changjiang contribution to seasonal variability in terrigenous particulate load to the Okinawa Trough[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2003,50(2):475-485. doi:  10.1016/S0967-0645(02)00469-1
    [22] Bian C W,Jiang W S,Song D H. Terrigenous transportation to the Okinawa Trough and the influence of typhoons on suspended sediment concentration[J]. Continental Shelf Research,2010,30(10/11):1189-1199.
    [23] Wang J Z,Li A C,Xu K H,et al. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the middle Okinawa Trough since 17 ka[J]. Marine Geology,2015,366:49-61. doi:  10.1016/j.margeo.2015.04.007
    [24] Dou Y G,Yang S Y,Liu Z X,et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka:constraints from rare earth element compositions[J]. Marine Geology,2010,275(1/4):212-220.
    [25] Dou Y G,Yang S Y,Liu Z X,et al. Sr–Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the late Quaternary[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2012,365/366:38-47.
    [26] Zheng X F,Li A C,Kao S,et al. Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum[J]. Earth and Planetary Science Letters,2016,452:247-257. doi:  10.1016/j.jpgl.2016.07.028
    [27] Zhao D B,Wan S M,Toucanne S,et al. Distinct control mechanism of fine‐grained sediments from Yellow River and Kyushu supply in the northern Okinawa Trough since the last glacial[J]. Geochemistry,Geophysics,Geosystems,2017,18(8):2949-2969.
    [28] Iseki K,Okamura K,Kiyomoto Y. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2003,50(2):457-473. doi:  10.1016/S0967-0645(02)00468-X
    [29] Lin S,Hsieh I J,Huang K M,et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments[J]. Chemical Geology,2002,182(2/4):377-394.
    [30] Yuan D L,Zhu J R,Li C Y,et al. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations[J]. Journal of Marine Systems,2008,70(1/2):134-149.
    [31] Chung Y C,Hung G W. Particulate fluxes and transports on the slope between the southern East China Sea and the South Okinawa Trough[J]. Continental Shelf Research,2000,20(4/5):571-597.
    [32] He X Q,Bai Y,Chen C T A,et al. Satellite views of the episodic terrestrial material transport to the southern Okinawa Trough driven by typhoon[J]. Journal of Geophysical Research:Oceans,2014,119(7):4490-4504.
    [33] Li Y H,Wang A J,Qiao L,et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang–Fujian coast,China[J]. Continental Shelf Research,2012,37:92-100. doi:  10.1016/j.csr.2012.02.020
    [34] Zhu C,Wagner T,Talbot H M,et al. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea[J]. Geochimica et Cosmochimica Acta,2013,117:129-143. doi:  10.1016/j.gca.2013.04.015
    [35] 冯 利,冯秀丽,宋 湦,等. 莱州湾表层沉积物粒度和黏土矿物分布特征与运移趋势分析[J]. 海洋科学,2018,42(2):1-9.
    [36] 沈昆明,蒋玉波,李安龙,等. 舟山群岛表层沉积物粒度和黏土矿物分布特征与物源指示[J]. 海岸工程,2020,39(1):24-33.
    [37] Mei X,Li X X,Wang Z B,et al. Cross shelf transport of terrigenous organic matter in surface sediments from outer shelf to Okinawa Trough in East China Sea[J]. Journal of Marine Systems,2019,199:103224. doi:  10.1016/j.jmarsys.2019.103224
    [38] Mei X,Li R H,Zhang X H,et al. Reconstruction of phytoplankton productivity and community structure in the South Yellow Sea[J]. China Geology,2019,2(3):315-324.
    [39] 梅 西, 李学杰, 密蓓蓓, 等. 中国海域表层沉积物分布规律及沉积分异模式[J]. 中国地质, 2020, 47(5): 1447-1462.
    [40] 王骏博. 溶解有机碳同位素测定方法研究及其在九龙江的应用[D]. 厦门: 国家海洋局第三海洋研究所, 2015.
    [41] Eglinton G,Hamilton R J. Leaf epicuticular waxes[J]. Science,1967,156(3780):1322-1335. doi:  10.1126/science.156.3780.1322
    [42] Meyers P A. Organic geochemical proxies of paleoceanographic,paleolimnologic,and paleoclimatic processes[J]. Organic Geochemistry,1997,27(5/6):213-250.
    [43] Hedges J I,Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry,1997,27(7/8):319-361.
    [44] Weijers J W H,Schouten S,Schefuß E,et al. Disentangling marine,soil and plant organic carbon contributions to continental margin sediments:a multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan[J]. Geochimica et Cosmochimica Acta,2009,73(1):119-132. doi:  10.1016/j.gca.2008.10.016
    [45] Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[M]//Rundel P W, Ehleringer J R, Nagy K A. Stable Isotopes in Ecological Research. New York: Springer, 1989.
    [46] Wu W C,Zhao L,Pei Y D,et al. Variability of tetraether lipids in Yellow River-dominated continental margin during the past eight decades:implications for organic matter sources and river channel shifts[J]. Organic Geochemistry,2013,60:33-39. doi:  10.1016/j.orggeochem.2013.04.014
    [47] Xing L,Zhao M X,Gao W X,et al. Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea[J]. Organic Geochemistry,2014,76:72-81. doi:  10.1016/j.orggeochem.2014.07.005
    [48] Guo Z G,Li J Y,Feng J L,et al. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002[J]. Chinese Science Bulletin,2006,51(17):2133-2140. doi:  10.1007/s11434-006-2071-7
    [49] 杨 莹,田 军,黄恩清. 末次盛冰期巽他大陆北部草本植被扩张[J]. 海洋地质与第四纪地质,2020,40(1):85-93.
    [50] Xing L,Zhang R P,Liu Y G,et al. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr[J]. Quaternary Science Reviews,2011,30(19/20):2666-2675.
    [51] Ternois Y,Kawamura K,Keigwin L,et al. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years[J]. Geochimica et Cosmochimica Acta,2001,65(5):791-802. doi:  10.1016/S0016-7037(00)00598-6
    [52] 丁喜桂,王吉松,赵广明,等. 黄河三角洲滨海湿地演化过程中的碳埋藏效率及其控制因素[J]. 中国地质,2016,43(1):319-328.
    [53] Rieley G,Collier R J,Jones D M,et al. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds[J]. Nature,1991,352(6334):425-427. doi:  10.1038/352425a0
    [54] Jeng W L,Huh C A. Lipids in suspended matter and sediments from the East China Sea Shelf[J]. Organic Geochemistry,2004,35(5):647-660. doi:  10.1016/j.orggeochem.2003.12.002
    [55] Jeng W L,Lin S,Kao S J. Distribution of terrigenous lipids in marine sediments off northeastern Taiwan[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2003,50(6/7):1179-1201.
    [56] Jeng W L,Huh C A. A comparison of sedimentary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough[J]. Continental Shelf Research,2008,28(4/5):582-592.
    [57] Saito Y,Katayama H,Ikehara K,et al. Transgressive and highstand systems tracts and post-glacial transgression,the East China Sea[J]. Sedimentary Geology,1998,122(1/4):217-232.
    [58] 陈珊珊,王中波,陆 凯,等. 东海北部外陆架MIS 6以来的沉积地层格架及古环境演化[J]. 海洋地质与第四纪地质,2019,39(6):124-137.
    [59] Chung Y,Chang W C. Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the South Okinawa Trough[J]. Continental Shelf Research,1995,15(2/3):149-164.
    [60] Ikehara K,Satoh M,Yamamoto H. Sedimentation in the Oki Trough,southern Japan Sea,as revealed by high resolution seismic records (3.5 kHz echograms)[J]. Journal of the Geological Society of Japan,1990,96(1):37-49. doi:  10.5575/geosoc.96.37
    [61] 王越奇,宋金明,袁华茂,等. 台湾东黑潮主流区近千年来沉积物稀土元素的变化特征与来源[J]. 海洋地质与第四纪地质,2019,39(2):104-113.
    [62] Honda M C,Imai K,Nojiri Y,et al. The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997-2000)[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2002,49(24/25):5595-5625.
    [63] 杨作升,郭志刚,王兆祥,等. 黄、东海水体中的有机包膜及其沉积作用[J]. 海洋与湖沼,1992(02):222-226,228.
    [64] 郭志刚,杨作升,张东奇,等. 冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J]. 海洋学报,2002,24(5):71-80.
    [65] Zhu C,Pan J M,Lu B,et al. Compositional feature of n-alkanes in modern sediment from the Changjiang Estuary and adjacent area and its implication to transport and distribution of organic carbon[J]. Acta Oceanologica Sinica,2005,27(4):59-67.
    [66] Jiang F Q,Li A C,Li T G. Sediment pathway of the East China Sea inferred from an R-mode factor analysis of surface sediments in the Okinawa Trough[J]. Quaternary International,2011,230(1/2):13-20.
    [67] 鲁晓红,陈颖军,黄国培,等. 黄渤海表层沉积物中正构烷烃和甾醇的分布及来源研究[J]. 生态环境学报,2011,20(6):1117-1122.
  • [1] 陈晓东, 蒋一鸣, 漆滨汶, 于仲坤.  东海丽水凹陷古新统非典型湖相烃源岩及油气特征 . 海洋地质前沿, 2021, 37(4): 25-38. doi: 10.16028/j.1009-2722.2021.039
    [2] 张参, 阳宏, 王飞龙, 曾晓祥, 王广源, 刘成林.  渤中凹陷南洼东营组烃源岩有机地球化学特征 . 海洋地质前沿, 2020, 36(11): 35-44. doi: 10.16028/j.1009-2722.2020.154
    [3] 颜中辉, 王小杰, 刘媛媛, 徐华宁, 杨佳佳, 杨长清, 杨传胜.  东海多次波压制的关键技术 . 海洋地质前沿, 2020, 36(7): 64-72. doi: 10.16028/j.1009-2722.2019.223
    [4] 李清, 蔡峰, 闫桂京, 孙运宝, 李昂, 骆迪, 王星星, 徐翠玲, 董刚, 尹希杰, 杨贤.  东海冲绳海槽泥火山发育区甲烷气体来源研究 . 海洋地质前沿, 2020, 36(9): 79-86. doi: 10.16028/j.1009-2722.2020.062
    [5] 李丹, 康洪全, 郝立华, 曹向阳, 刘小龙, 贾建忠.  西南非海岸盆地过渡期海相烃源岩有机相特征及其平面预测 . 海洋地质前沿, 2019, 35(5): 21-30. doi: 10.16028/j.1009-2722.2019.05003
    [6] 裴绍峰, 祝雅轩, 张海波, 叶思源, 袁红明, 丁喜桂, 刘海月.  辽东湾夏季叶绿素a分布特征与浮游植物溶解有机碳释放率估算 . 海洋地质前沿, 2018, 34(9): 64-72. doi: 10.16028/j.1009-2722.2018.09009
    [7] 黄磊, 孙桂华, 袁晓婕.  三沙湾表层沉积物中有机污染物的含量及风险评价 . 海洋地质前沿, 2017, 33(8): 63-69. doi: 10.16028/j.1009-2722.2017.08009
    [8] 蒋陶, 颜中辉, 赵倩, 方刚.  东海多道地震虚反射压制技术探讨 . 海洋地质前沿, 2017, 33(4): 58-63. doi: 10.16028/j.1009-2722.2017.04010
    [9] 孙晶, 王建强, 龚建明.  下扬子陆域海相中—古生界烃源岩有机质丰度特征及其岩相古地理 . 海洋地质前沿, 2016, 32(1): 22-28. doi: 10.16028/j.1009-2722.2016.01004
    [10] 李杰, 杨士雄, 梅西, 郭兴伟, 张训华.  中国陆架海区第四纪孢粉学研究进展 . 海洋地质前沿, 2015, 31(2): 42-51. doi: 10.16028/j.1009-2722.2015.02006
    [11] 孟祥君, 张训华, 韩波, 尚鲁宁.  冲绳海槽地区地球物理场特征及地壳结构分析 . 海洋地质前沿, 2015, 31(9): 1-6. doi: 10.16028/j.1009-2722.2015.09001
    [12] 刘俊, 吴淑玉, 李清.  冲绳海槽高分辨率层序地层研究 . 海洋地质前沿, 2015, 31(3): 6-13. doi: 10.16028/j.1009-2722.2015.03002
    [13] 赵德博, 万世明.  冲绳海槽沉积物物源示踪研究进展 . 海洋地质前沿, 2015, 31(2): 32-41. doi: 10.16028/j.1009-2722.2015.02005
    [14] 徐祖新.  基于颜色显示快速估算页岩有机碳含量的新方法 . 海洋地质前沿, 2014, 30(5): 64-69.
    [15] 茅晟懿, 朱小畏, 孙永革, 管红香, 吴能友.  南海北部神狐海域现代沉积物正构脂肪酸来源:加权平均碳同位素的建立与应用 . 海洋地质前沿, 2014, 30(8): 1-15.
    [16] 崔征科, 杨文达, 张异彪, 黄涛.  东海西湖凹陷中南部灾害地质因素及分布 . 海洋地质前沿, 2013, 29(7): 36-43.
    [17] 袁红明, 叶思源, 赵广明.  黄河三角洲表层土壤有机氯农药分布及生态风险评价 . 海洋地质前沿, 2012, 28(11): 43-46.
    [18] 赵广明, Eurico J D'Sa, 李广雪.  水体中有色可溶性有机物遥感在海岸带调查中的应用——以密西西比—阿查法拉亚海湾水域为例 . 海洋地质前沿, 2011, 37(2): 34-38,78.
    [19] 李清, 王家生, 蔡峰, 陈祈, 胡高伟.  天然气水合物系统多幕次甲烷渗漏作用的底栖有孔虫同位素响应——以IODP 311航次为例 . 海洋地质前沿, 2011, 27(6): 29-36.
    [20] 丁喜桂, 叶思源, 王吉松.  黄河三角洲湿地土壤、植物碳氮稳定同位素的组成特征 . 海洋地质前沿, 2011, 37(2): 66-71.
  • 加载中
图(7)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  9
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-22
  • 网络出版日期:  2020-10-13
  • 刊出日期:  2020-10-20

东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示

doi: 10.16028/j.1009-2722.2020.109
    基金项目:  中国地质调查局项目(DD20160137,DD20190208,GZH20140021)
    作者简介:

    熊 伟(1996—),男,在读硕士,主要从事海洋地质方面的研究工作. E-mail:807181333@qq.com

    通讯作者: 梅 西(1981—),男,博士,高级工程师,主要从事海洋地球化学方面的研究工作. E-mail:meixi@mail.cgs.gov.cn
  • 中图分类号: P736

摘要: 东海埋藏了通过长江、黄河以及台湾河流进入的巨量陆源有机碳,是重要的有机碳碳“汇”。识别东海沉积物中陆源有机碳的分布特征和搬运过程,是东海碳通量研究不可或缺的内容。目前关于陆源有机碳在东海沉积物中分布的研究区域主要集中在河口、内陆架以及水深<120 m的中、外陆架地区;针对东海外陆架和冲绳海槽陆坡的研究较少,仅少量研究对东海陆架与冲绳海槽南部沉积物的陆源有机碳特征进行了对比分析,对陆源有机碳的“源-汇”过程、分布特征、沉积动力机制等诸多问题尚缺乏系统性的认识。通过对东海外陆架-陆坡-冲绳海槽80个表层沉积物的长链正构烷烃含量及组成特征进行分析,并结合粒度、总有机碳(TOC)及稳定碳同位素(δ13C)指标,讨论了研究区沉积物中陆源有机碳的含量及运移分布。结果显示,δ13C和(ΣC27+C29+C31 n-alkane)/TOC指示的陆源有机碳相对含量在研究区变化范围很大,从外陆架到海槽,有先降低后增高的变化趋势,陆源有机碳在陆坡以及海槽的一些特定区域选择性的大量沉积。东海内陆架的陆源有机碳在横穿东海陆架后,可以在陆坡处通过搬运-沉积-再悬浮-再搬运的方式运移至冲绳海槽沉积。长链正构烷碳优势指数(CPI)的结果表明,来自东海内陆架的陆源有机碳主要在冲绳海槽28.5°—30°N范围内沉积,28.5°N以南的陆源有机质主要受到台湾物质的影响,而30°N以北沉积物中的陆源有机质主要是来源于黄河和日本岛。

English Abstract

熊 伟,梅 西,韩宗珠,等. 东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示[J]. 海洋地质前沿,2020,36(10):22-31 doi:  10.16028/j.1009-2722.2020.109
引用本文: 熊 伟,梅 西,韩宗珠,等. 东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示[J]. 海洋地质前沿,2020,36(10):22-31 doi:  10.16028/j.1009-2722.2020.109
WEI XIONG, Xi MEI, Zongzhu HAN, Zhongbo WANG, Yong ZHANG. CHARACTERISTICS OF N-ALKANES IN THE SURFACE SEDIMENTS OF THE EAST CHINA SEA AND THEIR IMPLICATIONS FOR THE DISTRIBUTION OF TERRIGENOUS ORGANIC MATTER[J]. Marine Geology Frontiers, 2020, 36(10): 22-31. doi: 10.16028/j.1009-2722.2020.109
Citation: WEI XIONG, Xi MEI, Zongzhu HAN, Zhongbo WANG, Yong ZHANG. CHARACTERISTICS OF N-ALKANES IN THE SURFACE SEDIMENTS OF THE EAST CHINA SEA AND THEIR IMPLICATIONS FOR THE DISTRIBUTION OF TERRIGENOUS ORGANIC MATTER[J]. Marine Geology Frontiers, 2020, 36(10): 22-31. doi: 10.16028/j.1009-2722.2020.109
    • 边缘海有机碳沉积速率比大洋高8~30倍,大约有80%以上的海洋沉积有机碳埋藏于边缘海[1],其中关键环节是河流的陆源有机碳输送,全球河流向海洋输送的陆源有机碳约4×108 t/a[2]。长江与黄河多年平均分别输出约5×108 t/a和1×109 t/a的沉积物至边缘海[3]。长江输出的沉积物约有60%可向东或被长江沿岸流向南带到东海陆架,成为东海表层沉积物的主要来源[4-5],台湾河流每年输出2.63×108 t沉积物(台湾西部1.91×108 t,东部0.72×108 t)[6],是东海表层沉积物的次要来源。

      前人对陆源有机碳从东海内陆架到外陆架的分布开展了大量研究[7-13]。陆源有机碳由长江输送到东海,大部分沉积在河口和内陆架泥质区[8],小部分向东输送到外陆架和冲绳海槽。随着搬运距离的增加,陆源有机碳的相对含量下降,而海源有机碳的相对含量增加[11],但是表层沉积物总有机碳堆积速率在外陆架边缘以及陆坡的值仍然很高,远高于沉积物捕获器所测数据,表明跨陆架侧向运移在从陆架到海槽的搬运过程中起到重要作用[14]。东海陆架水的停留时间约1~2 a[15],较短的停留时间意味着东海陆架与外界的物质交换活动非常活跃。东海吸收长江河口附近的内-中陆架地区的碳为(20~30)×106 t/a[16-18],而这个数值远大于陆架沉积物中埋藏有机碳的估值(10×106 t /a)[19],据此推断很大一部分的有机碳被搬运到了东海外陆架、陆坡甚至更远的冲绳海槽。因此,跨陆架搬运作用不可忽视[7, 20-23]

      冲绳海槽西部陆坡在末次冰盛期以来沉积了大量的陆源沉积物,研究者通过黏土矿物、地球化学、同位素等指标研究了其物质来源[23-27]。目前对于冲绳海槽中北部表层沉积物的来源分布以及运移路径仍然不是很清楚,主要观点有:①表层陆源沉积物主要来自于长江和东海陆架在冬季的侧向跨陆架搬运[28-29];②冲绳海槽陆源沉积物主要来源于古黄海水下三角洲,主要通过冬天的大风和黄海沿岸流搬运[30];③主要物质来源于冲绳海槽南部,通过黑潮向北部进行运移[7, 13, 20];④因火山-构造活动、地震活动、风暴及内波等作用,海底峡谷极易形成浓度高、密度大的浊流,在重力作用下迅速进入海槽,在谷口及更深水区堆积[22, 31-33]

      在开放的“河口-陆架-冲绳海槽”体系中,为解决有机碳在输送过程中发生的变化,需要选定足够数量的物理化学性质和来源均稳定的天然示踪物作为标志,其中正构烷烃就是这样一类标志物,其精确的分子结构和组成特征既可用作地质环境演化的指示标志,又可作为物质来源的表征[34]。本文在前人工作基础上,对东海外陆架、陆坡和冲绳海槽80个表层沉积物中长链正构烷烃的含量及其组成进行分析,并与粒度、总有机碳含量以及稳定碳同位素等指标进行对比,讨论此区域沉积物中陆源有机碳的来源及运移分布特征。

    • 本文选取了80个站位的表层沉积物,研究区范围为28.0°—31.0°N,126.0°—129°E。水深变化范围为52~1 400 m,站位分布情况如图1所示。样品采集后,立即装入干净的聚乙烯袋中,冷冻(−20 ℃)保存至实验室分析。

      图  1  取样站位(红色虚线是陆架、陆坡和海槽样品的界线)

      Figure 1.  Locations of the sampling sites (the red dashed lines are the boundary of the shelf,slope and trough samples)

    • 粒度测定实验在青岛海洋地质研究所粒度分析室完成。具体步骤如下:样品冷冻干燥后取0.2 g的样品加入10 mL浓度为10% H2O2静置24 h,以去除有机质组分;再加入15 mL浓度为0.1 mol/L的盐酸去除碳酸盐;然后用仪器自带的超声波振荡器超声分散30 s;再使用英国Malvern公司生产的Mastersizer 2000型激光粒度仪进行分析。测量范围为0.02~2 000 μm,分辨率为0.01,分析误差为±2%[35-39]

      总有机碳(TOC)含量测定在青岛海洋地质研究所完成。采用的是酸洗去除碳酸盐再上元素分析仪的方法。具体步骤如下:称取样品约0.04 g,用10%的盐酸10 mL浸泡3次,每次约8 h,离心弃去酸液,水洗至中性,然后60 ℃下烘干过夜,放入干燥器中平衡至恒重。取1~10 mg样品使用元素分析仪(EA1110 Elemental Analyzer)测定有机碳的百分含量[38-39]

    • 总有机碳稳定同位素测定在青岛海洋地质研究所完成。采用IRMS燃烧质谱法,利用UreaEA1110 元素分析仪与GV-Isoprime联用仪进行测试。样品经燃烧分离后送质谱分析,与参考气体进行参比确定信号强度。有机碳同位素测试数据利用标准物蛋白OAS(B2155)的测试结果校正到PDB标准。重复测试显示δ13Corg分析精度优于0.1‰[39-40]

    • 正构烷烃分析分为样品预处理和上机分析2个过程:①样品预处理,样品冷冻干燥后进行研磨,准确称取4 g样品进行冷冻干燥研磨;加入萃取剂二氯甲烷和甲醇(3:1)以及内标(19醇和24氘烷),震荡、超声15 min,萃取4次;萃取液经氮吹富集后加入KOH甲醇溶液进行水解,水解液用正己烷萃取4次后氮吹富集;然后过硅胶柱分离,用正己烷淋洗出含烷烃的非极性组分,加异辛烷定容待上机分析。②仪器分析,所有样品进GC(Agilent 6890 N)定量分析,由生标的峰面积与内标峰面积对比计算得到。GC条件色谱柱为毛细管柱HP-1(型号Agilent 19091Z-433,30 m×0.25 mm×0.25 μm),进样口温度为300 ℃,FID检测器温度为300 ℃,采用不分流进样,所用载气为氦气,流速为1.3 mL/min。实验的相对标准偏差±10%。

    • 研究区域表层沉积物的平均粒径为7.3~308.3 μm,平均为100.5 μm。细颗粒沉积物主要分布在外陆架西北部和冲绳海槽,而砂质沉积物主要分布在陆坡及周边的外陆架区域(图2a)。研究区域表层沉积物中TOC含量为0.21%~1.78%,平均为0.62%;细粒沉积区的TOC含量明显高于其周围砂质区域(图2b),TOC含量与沉积物粒度平均值呈明显的负相关关系(R2=0.51,图3a),从外陆架到海槽随水深加深,TOC含量有增高的趋势(R2=0.53,图3b),表明沉积物中的有机质主要吸附于细颗粒沉积物。研究区表层沉积物中有机碳的δ13C为−23.4‰~−20.1‰,平均为−21.0‰。δ13C值最低值出现在14、50、56、60和75站位(均低于−22.0‰)(图2c),δ13C值不受沉积物粒度控制(R2=0.05,图3c)。

      图  2  研究区表层沉积物粒度(a)、TOC(b)和δ13C(c)平面分布图

      Figure 2.  The distribution of grain-size(a),TOC(b)and δ13C(c)of surface sediment in the study area

    • 沉积物中正构烷烃碳分子数分布范围为C20—C35,正构烷烃以C29和C31为主峰碳,奇偶优势明显(图4)。长链正构烷烃主要来源于陆地高等植物表层蜡质,具有奇碳数优势特征[41],以C27、C29和C31最为丰富,往往用高碳数正构烷烃含量之和(TOM(terrigenous organic matter)=ΣC27+C29+C31 n-alkane)来指示陆源植物输入的有机质含量[11-12, 34, 42]。研究区样品中陆源生物标志物TOM含量变化范围为12~425 ng/g(平均值为181 ng/g),冲绳海槽区域的值明显高于外陆架和陆坡(图5a)。

      图  3  表层沉积物平均粒径(Mz)和TOC(a)、水深和TOC(b)、Mz和δ13C(c)的相关性分析

      Figure 3.  Correlations between grain-size vs. TOC(a),water depth vs.TOC(b)and grain-size vs. δ13C(c)of surface sediments

      图  4  典型站位正构烷烃组成特征分布

      Figure 4.  The n-alkane distribution in typical stations

      图  5  表层沉积物TOM含量(a)、长链正构烷烃CPI指数(b)平面分布

      Figure 5.  The distribution of TOM content(a),long chain normal alkane CPI index(b)of surface sediments.

      来源于高等植物的长链正构烷烃有明显的奇偶优势,经历成岩、降解等作用后,其奇偶优势降低。因此,长链正构烷烃的碳优势指数CPI(carbon preference index)可指示烷烃的成熟度和来源,陆源高等植物一般>3,越小成熟度越高。CPI的计算公式如下:

      $$ \!\!\!\! CPI{\rm{ = }}\frac{1}{2}\left[ {\frac{{\displaystyle\sum {{{\rm C}_{25}}{\rm{ - }}{{\rm C}_{33}}} \left( {{\rm{o}}dd} \right)}}{{\displaystyle\sum {{{\rm C}_{24}}{\rm{ - }}{{\rm C}_{32}}} \left( {even} \right)}} + \frac{{\displaystyle\sum {{{\rm C}_{25}}{\rm{ - }}{{\rm C}_{33}}} \left( {{\rm{o}}dd} \right)}}{{\displaystyle\sum {{{\rm C}_{26}}{\rm{ - }}{{\rm C}_{34}}} \left( {even} \right)}}} \right] $$

      研究区表层沉积物的CPI值在1.8~5.9范围内变化,与TOM变化趋势一致,海槽沉积物的值最高(图5b)。

    • 研究区表层沉积物的δ13C值在−23.4‰~−20.1‰之间变化,这个结果与前人在东海陆架表层沉积物的结果(−22.7‰~−20.1‰)[11]一致,表明有机质来源于海源和陆源的混合输入,海源有机质具有更偏向正值的δ13C值(平均值−20.0‰)[43-44]。如图2c所示,大部分站位(54个站位)表层沉积物的δ13C值偏正(>−21.0‰),表明研究区海源有机质的贡献较多。利用沉积物中的δ13Corg可以建立二端元模型来定量计算陆源有机碳的相对含量。前人在应用碳稳定同位素判断有机质来源时,一般选择−27‰为陆源端元值,−20‰为海洋源端元值[44-45]。实际上,在中国东部海区研究中的端元值不是一成不变的,如在渤海海域柱状样沉积物有机质来源分析时采用的海源、土壤源和陆源C3植物输入的端元值分别为−20.9‰、−24.9‰和−27‰[46];对黄海表层沉积物的研究中,采取的海源和陆源C3植物输入端元值分别为−20‰和−26.5‰[47];而对东海表层沉积物有机质来源分析时,采取的海源和陆源C3植物输入端元值分别为−20‰和−25.6‰[11-12]。在本研究中,也取−25.6‰和−20‰作为研究区陆源端和海源端的典型值,对研究区表层沉积物中有机质的陆源有机质的相对含量进行了定量计算,计算结果如图6a所示。二元模式计算得到的陆源有机质的比例为0.1%~61.5%。陆地植被由于存在δ13C值偏正的C4植被,在应用δ13C方法区分海陆有机质时会造成偏差,但对东海沉积物的n-alkanes的δ13C分析显示,虽然从内陆架到外陆架,陆源有机质中C3植被的贡献是逐渐降低的,但是其仍然是陆源有机质的主要贡献者[48]。因此,总有机碳的δ13C值是可以作为区分东海有机质来源的指标。基于总有机碳的δ13C估算的陆源有机碳相对含量在研究区从外陆架(18.1%±12.6%)到陆坡(15.8%±3.5%)再到海槽(19.2%±8.3%),有先降低后增加的整体变化趋势,高值出现在外陆架14站位、陆坡50、56、60站位和冲绳海槽北部75站位,表明陆源有机碳在这些特殊站位进行了大量的沉积。

      陆地高等植物表层蜡质经水解作用后可以分解为具有偶数碳的高分子量酸和醇(脂肪酸、长链正构醇),在还原环境中会脱掉羧基和羟基转化为长链奇数碳的正构烷烃。长链正构烷烃常作为陆源有机质的指示指标,在东海[11]、黄海[47, 38]、南海[49]、日本海[50]、鄂霍次克海[51]等全球众多海区得到了很好的应用。海源或陆源生物标志物的绝对含量可以从一定程度上反映海源和陆源有机物的相对贡献,但会受到沉积速率和降解速率等因素的影响,而生物标志物在TOC中的相对含量可以在一定程度上消除沉积速率和降解速率的影响,TOM/TOC可以用来分析研究区陆源输入情况。如图6b所示,TOM/TOC值水平分布的整体趋势与δ13C指示的陆源有机碳含量变化趋势相一致,2个指标有着较好的正相关关系(R2=0.42,图6c),TOM/TOC值和总有机碳的δ13C估算的陆源有机碳含量高值均出现在外陆架14站位以及陆坡50、56、60站位和冲绳海槽北部75站位,陆源有机物在这些地方大量沉积,表明了这些特殊的站位可能是陆源有机碳沉积的汇区。这些站位水深较深,陆源信号有可能是陆源有机质的选择性保存,即有机碳的埋藏效率差异[52],海洋源有机质在水柱中优先降解,使得陆源沉积的相对贡献升高,还有可能是陆源有机质跨陆架搬运的路径中在水动力较弱的地区选择性沉降,而准确的原因还有待进一步研究。

    • 碳优势指数 CPI值可指示烷烃的成熟度和来源[53]。研究区沉积物 CPI值为1.8~5.9(平均为3.1±0.6)。如图7a所示, CPI值由西向东递增:东海外陆架 CPI值(2.7±0.3)最低,陆坡样品的 CPI值(3.4±0.7)居中,冲绳海槽样品 CPI值(3.7±0.6)最高。典型的高等植被提供的陆源有机碳的长链正构烷烃 CPI值>4,随着陆源烷烃的降解 CPI值会降低[54-55]。东海内陆架沉积物中长链正构烷烃主要来自长江输送的新鲜陆源有机物,未遭受强烈降解,烷烃参数表现为具有较高的 CPI值(4.56±0.93,n=8[56];4.58±0.95,n=20[9];3.95±0.65,n=53[7]),而在东海中陆架和外陆架 CPI值较低(2.25±0.45,n=12[11]); CPI在内陆架较高,而在外陆架较低,表明长江输送的高等植物陆源有机碳主要在向南运移在东海内陆架沉积,而不是向东直接输送到东海外陆架沉积[7, 56]。研究区沉积物的 CPI值在东海外陆架值明显低于陆坡和海槽区,主要是因为东海外陆架广泛分布有晚更新世的残留沉积[57-58],这些残留沉积物发生了较强的有机质的降解,所以使得外陆架具有较低的 CPI值。陆坡和海槽沉积物的 CPI值明显比外陆架高,这表明陆坡和海槽沉积物中陆源有机碳的来源与东海外陆架完全不同。

      图  6  陆源有机碳含量平面分布

      Figure 6.  Surface distribution of terrestrial organic carbon

      图  7  沉积物CPI值变化

      Figure 7.  Changes in sediment CPI value

      冲绳海槽(65~81站位)从南到北的站位沉积物 CPI值也有着明显的分区。如图7b所示,研究区最南部(66~68站位)沉积物 CPI值较低(平均值为3.11);中部(65站位,75~81站位)沉积物 CPI值最高(平均值为4.13);北部(69~74站位)沉积物的 CPI值介于前面二者之间(平均值为3.40)。冲绳海槽南部沉积物沉积速率可以达到0.10~0.95 cm/a[59],是北部和中部沉积速率(0.01~0.08 cm/a)[60]的10倍,被认为是重要的陆源有机碳“汇”的区域[20]。总有机碳同位素证据表明冲绳海槽南部沉积物的陆源有机碳主要来源于东海内陆架[20],然而烷烃指标的研究结果却表明,冲绳海槽南部沉积物陆源有机碳仅有很小一部分来自于东海内陆架[56]。生物标志物及地球化学多参数的指标表明,由于强盛的黑潮以及台湾暖流的阻隔,东海内陆架与南冲绳海槽物质交换困难,来自东海陆架的陆源有机碳大部分沉积在陆坡到东海中陆架范围内,只有小部分达到南冲绳海槽[13]。从地理位置以及区域环流体系考虑,冲绳海槽中北部与南部物源是有一定差异的。由于冲绳海槽中北部远离台湾,相对靠近中国大陆,台湾的沉积物在冲绳海槽南部已经沉积下来[61],只有很少部分随着黑潮向北搬运。但是前人对DGKS9603、9604以及A7柱状样研究表明,中全新世以来陆源物质主要来自于台湾[24-26],本研究区南部(66~68站位)沉积物 CPI值较低,可能因为陆源有机碳主要是来源于台湾,台湾入海沉积物经历了很强的化学风化作用和降解,冲绳海槽南部沉积物烷烃 CPI值较低(2.92±0.79,n=12)[7, 54],而65站位沉积物 CPI值发生了明显的增加(由2.98增至4.03,图7b),表明台湾物质可能主要影响冲绳海槽28.5°N以南的区域。

      研究区中部站位的 CPI值显著增高,与东海内陆架沉积物 CPI值接近,表明陆源有机碳的物质来源与南部站位相比发生了明显的转变,从台湾来源为主转为东海内陆架沉积物为主的输入。实际观测分析表明,东海现代沉积过程中存在着悬浮体由陆架向海槽的近底侧向搬运[14, 28, 62],且具有“冬贮夏输”季节性格局[63]。前人对悬浮体的搬运路径的研究表明,冬季在东海北部有陆架悬浮体输送到冲绳海槽,但有区域性,其输送的可能位置是在P-N断面(28°N)以北、32°N断面以南之黄海沿岸流向东南延伸的陆架边缘[64]。对生物标志物的研究结果表明,冲绳海槽区中部的物质可能大部分来源于长江及东海内陆架。其机理在于在冬季季风产生的横向环流作用下以搬运-沉积-再悬浮-再沉积的“接力”形式传递[65]

      研究区北部站位 CPI值(平均值3.40)相比中部站位(平均值4.13)又发生了明显的下降,表明沉积物陆源有机质来源再次发生了转变,从75站位到74站位, CPI值由5.90下降到3.18。前人研究认为冲绳海槽东北部陆源沉积物主要来源于古黄海水下三角洲,主要通过冬天的大风和黄海沿岸流搬运[30],Jiang等[66]根据化学成分和元素组合等证据,认为在东海北部黄河的影响强于长江,在冲绳海槽北部至南部源于黄河的沉积物减少而源于长江的增加。有研究表明全新世高海平面以来冲绳海槽北部陆坡陆源物质主要来源于黄河和日本九州岛[27]。古黄河水下三角洲沉积物经历了长时间的降解, CPI值较低[65, 67],由于古黄河三角洲沉积物的影响,使得研究区北部沉积物的 CPI值出现了明显的下降。本研究表明冲绳海槽30°N以北的区域陆源有机质来源主要受到黄河和日本岛物源所控制,而长江内陆架主要影响冲绳海槽28.5°—30°N的区域。

    • 通过对东海表层沉积物粒度、总有机碳、稳定碳同位素及正构烷烃等指标的分析,得出以下结论:

      (1)沉积物中的陆源有机碳在东海外陆架、陆坡和冲绳海槽都广泛分布,并且在陆坡以及海槽的特殊区域大量沉积。

      (2)东海内陆架的陆源有机碳在横穿东海陆架后,仍可以通过“搬运-沉积-再悬浮-搬运”的跨陆架搬运机制运移至冲绳海槽。来自东海内陆架的陆源有机碳主要在冲绳海槽28.5°~30°N范围内,其南部陆源有机碳主要受到台湾物源的影响,北部来源可能主要是黄河和日本岛物源。

参考文献 (67)

目录

    /

    返回文章
    返回