千里岩岛西部人工鱼礁建设对周边海域水动力影响的数值模拟

    NUMERICAL SIMULATION OF THE INFLUENCE OF ARTIFICAL REEFS ON MARINE HYDRODYNAMICS TO THE WEST OF QIANLIYAN ISLAND

    • 摘要: 通过建立Mike21FM模型,对千里岩西部人工鱼礁建设区域及周围海域的水动力情况的数值模拟进行研究,分别选取工程前后的涨急时刻和落急时刻的潮流流速进行求差,得出2个时刻的潮流流速变化等值线与分布范围。并选取720 h进行欧拉余流计算,对工程前后的余流流速进行求差,由此得出余流在工程建设后的变化情况。由此研究工程建设对周围海域水动力情况的影响,进而对鱼礁区选址的合理性,营养盐的流失或富集区域及水质的研究提供参考。研究表明,工程建设产生的阻流效果在工程内部区域可达0.4 m·s−1;涨急时刻潮流流速增大的区域位于工程区域南北两侧,>0.05 m·s−1面积约4.52 km2;涨急时刻潮流流速减少的区域分布于工程区域东西两侧,流速减少超过0.05 m·s−1的面积约4.28 km2;工程区域内部余流流速减少均值在0.01 m·s−1左右,工程区域外周边海域余流流速整体增大,最大增值超过0.1 m·s−1的区域出现于工程东部,面积0.41 km2

       

      Abstract: Based on the Mike21FM model, the hydrodynamic conditions of the artificial reef construction area and the surrounding sea area in Qianliyan West are simulated. The Euler residual current is calculated for 720 hours, and the residual flow velocity before and after engineering is calculated. The influence of engineering construction on hydrodynamic condition of surrounding sea area is studied. Furthermore, it provides reference for the study of the rationality of reef site selection, nutrient loss or enrichment area and water quality. The research shows that the resistance effect of engineering construction can reach 0.4 m·s−1. The area where the current velocity increases during the period of surge is located in the north and south sides of the project area, with an area greater than 0.05 m·s−1 of about 4.52 km2; The area where the current velocity decreases over 0.05 m·s−1 is about 4.28 km2. The mean decrease of euler residual current velocity in the project area was around 0.01 m/s, and the overall increase of euler residual current velocity in the surrounding sea area outside the project area, and the area with the maximum increase of more than 0.1 m·s−1 appeared in the east of the project with an area of 0.41 km2.

       

    /

    返回文章
    返回