天然气水合物油气系统模拟新技术方法与应用

    NEW TECHNOLOGY FOR GAS HYDRATE PETROLEUM SYSTEM MODELING AND ITS APPLICATION

    • 摘要: 为弄清天然气水合物油气系统模拟的原理和实现过程及应用,系统分析了水合物油气系统发展历程和技术特色,总结了该技术在墨西哥湾、水合物脊、阿拉斯加北坡及中国天然气水合物研究中的应用。研究认为:天然气水合物油气系统模拟是在研究类似含油气系统中的生烃、排烃、运移、聚集和逸散模拟基础上,对地质模型网格和地质时代进行细化设置,达到对不同地质时期水合物的分布、热成因/生物成因甲烷气的运移、稳定带内水合物形成时期和资源量进行模拟的目的。系统的模拟可以证实含气流体的运移是天然气水合物聚集成藏的重要控制因素,可以预测天然气水合物稳定带的空间分布、地质演化,热成因气和生物成因气生成、运移、聚集并形成天然气水合物的过程,还可以定量计算水合物资源量。目前,中国对于该技术的应用还处于起步阶段,应该深入学习国外成功经验,大力推广,以提高中国天然气水合物理论研究及勘探开发水平。

       

      Abstract: In order to further investigate the principles and technology for simulation modeling of gas hydrate petroleum system, a thorough review is made in this paper on the current technical development in the system, in addition to a summarization of some typical cases, such as the Gulf of Mexico, the north slope of Alaska Hydrate Ridge and the natural gas hydrate discoveries in China. The current gas hydrate petroleum system was building upon the model of traditional petroleum system, which includes the generation, pulsation, migration, accumulation and dissemination of petroleum in 3D geological models in different ages. Facts show that the model could also be used for simulation of gas hydrate distribution in different geological periods, migration of thermogenic/biogenic methane, hydrate forming time and resource potential in the stable zone. The result of simulation confirms in general that the migration of gas bearing fluid is an important controlling factor for gas hydrate accumulation. The simulation system could be used to predict the spatial distribution and geological evolution of the gas hydrate stable zone, thermogenic gas and biogenic gas generation, migration and accumulation during the formation of gas hydrate, and quantitative simulation of hydrate resources. Currently, the research and application of this technology is still limited in China, therefore, we should improve the theoretical research as well as exploration and development of gas hydrate in China based on the experience of previous studies.

       

    /

    返回文章
    返回