[1] |
苏丕波,何家雄,梁金强,等. 南海北部陆坡深水区天然气水合物成藏系统及其控制因素[J]. 海洋地质前沿,2017,33(7):1-10. |
[2] |
刘昌岭,李彦龙,孙建业,等. 天然气水合物试采:从实验模拟到场地实施[J]. 海洋地质与第四纪地质,2017,37(5):12-26. |
[3] |
Ruppel C D,Kessler J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics,2017,55(1):126-168. doi: 10.1002/2016RG000534 |
[4] |
鲁晓兵,张旭辉,王淑云. 天然气水合物开采相关的安全性研究进展[J]. 中国科学(物理学 力学 天文学),2019,49(3):034602. |
[5] |
吴能友,黄 丽,胡高伟,等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质,2017,37(5):1-11. |
[6] |
刘乐乐,张旭辉,刘昌岭,等. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报,2016,48(3):720-729. doi: 10.6052/0459-1879-15-400 |
[7] |
Bu Q T ,Hu G W,Ye Y G,et al. The elastic wave velocity response of methane gas hydarte formation in vertical gas migration systems[J]. Journal of Geophysics and Engineering,2017,14(3):555-569. doi: 10.1088/1742-2140/aa6493 |
[8] |
Dai S,Seol Y. Water permeability in hydrate-bearing sediments:A pore-scale study[J]. Geophysical Research Letters,2014,41:4176-4184. doi: 10.1002/2014GL060535 |
[9] |
Dai S,Santamarina J C,Waite W F,et al. Hydrate morphology:Physical properties of sands with patchy hydrate saturation[J]. Journal of Geophysical Research:Solid Earth,2012,117(B11):B11205. |
[10] |
陈国旗,李承峰,刘昌岭,等. 多孔介质中甲烷水合物的微观分布对电阻率的影响[J]. 新能源进展,2019,7(6):493-499. |
[11] |
Mahabadi N,Dai S,Seol Y,et al. The water retention curve and relative permeability for gas production from hydrate-bearing sediments:pore-network model simulation[J]. Geochemistry,Geophysics,Geosystems,2016,17(8):3099-3110. doi: 10.1002/2016GC006372 |
[12] |
胡高伟,李承峰,业渝光,等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报,2014,57(5):1675-1682. doi: 10.6038/cjg20140530 |
[13] |
Chaouachi M,Falenty A,Sell K,et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry,Geophysics,Geosystems,2015,16(6):1711-1722. |
[14] |
Ta X H,Yun T S,Muhunthan B,et al. Observations of pore-scale growth patterns of carbon dioxide hydrate using X-ray computed microtomography[J]. Geochemistry,Geophysics,Geosystems,2015,16(3):912-924. |
[15] |
Delli M L,Grozic J L H. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering,2014,120:1-9. doi: 10.1016/j.petrol.2014.05.011 |
[16] |
Carman P C. Permeability of saturated sands,soils and clays[J]. The Journal of Agricultural Science,1939,29(2):262-273. doi: 10.1017/S0021859600051789 |
[17] |
Wang J Q,Zhao J F,Yang M J,et al. Permeability of laboratory-formed porous media containing methane hydrate:Observations using X-ray computed tomography and simulations with pore network models[J]. Fuel,2015,145:170-179. doi: 10.1016/j.fuel.2014.12.079 |
[18] |
Wang D G,Wang C C,Li C F,et al. Effect of gas hydrate formation and decomposition on flow properties of fine-grained quartz sand sediments using X-ray CT based pore network model simulation[J]. Fuel,2018,226:516-526. doi: 10.1016/j.fuel.2018.04.042 |
[19] |
Wang D G,Li Y,Liu C L,et al. Study of hydrate occupancy,morphology and microstructure evolution with hydrate dissociation in sediment matrices using X-ray micro-CT[J]. Marine and Petroleum Geology,2020,113:104138. doi: 10.1016/j.marpetgeo.2019.104138 |
[20] |
Mandelbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science,1967,156(3775):636-638. doi: 10.1126/science.156.3775.636 |
[21] |
Mandelbrot B B. Fractals: Form, Chance and Dimension[M]. New York: W. H. Freeman and Company, 1977. |
[22] |
Mandelbrot B B. The fractal geometry of nature[M]. New York: W. H. Freeman and Company, 1982: 1-468. |
[23] |
蔡建超, 胡祥云. 多孔介质分形理论与应用[M]. 北京: 科学出版社, 2015: 1-208. |
[24] |
张济忠. 分形[M]. 北京: 清华大学出版社, 2011: 1-310. |
[25] |
Falconer K. Fractal Geometry: Mathematical Foundations and Applications[M]. New Jersey: Wiley, 2005:1-398. |
[26] |
郁伯铭. 多孔介质输运性质的分形分析研究进展[J]. 力学进展,2003,33(3):333-346. doi: 10.3321/j.issn:1000-0992.2003.03.005 |
[27] |
Cai J C,Luo L,Ye R,et al. Recent advances on fractal modeling of permeability for fibrous porous media[J]. Fractals,2015,23(1):1540006. doi: 10.1142/S0218348X1540006X |
[28] |
Yu B. Analysis of Flow in Fractal Porous Media[J]. Applied Mechanics Reviews,2008,61(5):050801. doi: 10.1115/1.2955849 |
[29] |
张佳瑞,王金满,祝宇成,等. 分形理论在土壤学应用中的研究进展[J]. 土壤通报,2017,48(1):221-228. |
[30] |
詹卫华,黄冠华. 土壤水力特性分形特征的研究进展[J]. 水科学进展,2000,11(4):457-462. doi: 10.3321/j.issn:1001-6791.2000.04.019 |
[31] |
官 庆,李 允. 具有分形特性的油藏渗流理论进展概述[J]. 西南石油大学学报,2007,29(2):106-190. |
[32] |
Wei W,Xia Y X. Geometrical,fractal and hydraulic properties of fractured reservoirs:A mini-review[J]. Advances in Geo-Energy Research,2017,1(1):31-38. doi: 10.26804/ager.2017.01.03 |
[33] |
Majumdar A,Bhushan B. Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces[J]. Journal of Tribology,1990,112(2):205-216. doi: 10.1115/1.2920243 |
[34] |
Yu B M,Li J H. Some fractal characters of porous media[J]. Fractals,2001,9(3):365-372. doi: 10.1142/S0218348X01000804 |
[35] |
Xu P,Qiu S X,Yu B M,et al. Prediction of relative permeability in unsaturated porous media with a fractal approach[J]. International Journal of Heat and Mass Transfer,2013,64:829-837. doi: 10.1016/j.ijheatmasstransfer.2013.05.003 |
[36] |
Yu B M,Cheng P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer,2002,45(14):2983-2993. doi: 10.1016/S0017-9310(02)00014-5 |
[37] |
Xia Y X,Cai J C,Wei W,et al. A new method for calculating fractal dimensions of porous media based on pore size distribution[J]. Fractals,2018,26(1):1850006. doi: 10.1142/S0218348X18500068 |
[38] |
Costa A. Permeability-porosity relationship:A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption[J]. Geophysical Research Letters,2006,33:L02318. doi: 10.1029/2005GL025134 |
[39] |
Zhao Y X,Zhu G P,Dong Y H,et al. Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores[J]. Fuel,2017,210:217-226. doi: 10.1016/j.fuel.2017.08.068 |
[40] |
Zhang Z,Li C F,Ning F L,et al. Pore fractal characteristics of hydrate-bearing sands and implications to the saturated water permeability[J]. Journal of Geophysical Research:Solid Earth,2020,125:e2019JB018721. doi: 10.1029/2019JB018721 |
[41] |
Perrier E,Bird N,Rieu M. Generalizing the fractal model of soil structure:the pore–solid fractal approach[J]. Geoderma,1999,88(3):137-164. |
[42] |
Daigle H. Relative permeability to water or gas in the presence of hydrates in porous media from critical path analysis[J]. Journal of Petroleum Science and Engineering,2016,146:526-535. doi: 10.1016/j.petrol.2016.07.011 |
[43] |
Kleinberg R L,Flaum C,Griffin D D,et al. Deep sea NMR:Methane hydrate growth habit in porous media and its relationship to hydraulic permeability,deposit accumulation,and submarine slope stability[J]. Journal of Geophysical Research:Solid Earth,2003,108(B10):2508. |
[44] |
Katagiri J,Konno Y,Yoneda J,et al. Pore-scale modeling of flow in particle packs containing grain-coating and pore-filling hydrates:Verification of a Kozeny-Carman-based permeability reduction model[J]. Journal of Natural Gas Science and Engineering,2017,45:537-551. doi: 10.1016/j.jngse.2017.06.019 |
[45] |
Singh H,Mahabadi N,Myshakin E M,et al. A mechanistic model for relative permeability of gas and water flow in hydrate-bearing porous media with capillarity[J]. Water Resource Research,2019,55(4):3414-3432. doi: 10.1029/2018WR024278 |
[46] |
Chen X Y,Espinoza D N. Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate[J]. Fuel,2018,214:614-622. doi: 10.1016/j.fuel.2017.11.065 |
[47] |
Li C F,Liu C L,Hu G W,et al. Investigation on the multiparameter of hydrate-bearing sands using Nano-Focus X-Ray computed tomography[J]. Journal of Geophysical Research:Solid Earth,2019,124(3):2286-2296. doi: 10.1029/2018JB015849 |
[48] |
Li C F,Hu G W,Zhang W,et al. Influence of foraminifera on formation and occurrence characteristics of natural gas hydrates in fine-grained sediments from Shenhu area,South China Sea[J]. Science China Earth Sciences,2016,59(11):2223-2230. doi: 10.1007/s11430-016-5005-3 |
[49] |
Ning F L, Li C F, Cai J C, et al. Study on the relative permeability of hydrate-bearing sediments by a fractal parallel capillary model[C] //9th International Conference on Gas Hydrates, Denver, Colorado, USA 2017. |
[50] |
Liu L L,Dai S,Ning F L,et al. Fractal characteristics of unsaturated sands−implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2019,66:11-17. doi: 10.1016/j.jngse.2019.03.019 |
[51] |
Mahabadi N,Jang J. Relative water and gas permeability for gas production from hydrate-bearing sediments[J]. Geochemistry,Geophysics,Geosystems,2014,15(6):2346-2353. |
[52] |
刘乐乐,张 准,宁伏龙,等. 含水合物沉积物渗透率分形模型[J]. 中国科学:物理学力学天文学,2019,49(3):034614. |
[53] |
Liu L L,Zhang Z,Li C F,et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic,mechanical,and electrical properties of hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2020,75:103-109. doi: 10.1016/j.jngse.2019.103109 |
[54] |
Jiang S F , Kang Y H, Sun Z Q. A digital image method for analysis of soil pores[C] //Proceedings of the IFIP International Federation for Information Processing, Boston, Massachusetts, USA: Springer US, 2009. |
[55] |
Silin D,Patzek T. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A:Statistical Mechanics and its Applications,2006,371(2):336-360. doi: 10.1016/j.physa.2006.04.048 |
[56] |
Breyiannis G,Varoutis S,Valougeorgis D. Rarefied gas flow in concentric annular tube:Estimation of the Poiseuille number and the exact hydraulic diameter[J]. European Journal of Mechanics - B/Fluids,2008,27(5):609-622. doi: 10.1016/j.euromechflu.2007.10.002 |
[57] |
Liu L,Wu N,Liu C,et al. Maximum sizes of fluids occupied pores within hydrate-bearing porous media composed of different host particles[J]. Geofluids,2020. doi: 10.1155/2020/8880286 |
[58] |
Cai J C, Xia Y X,Lu C,et al. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir[J]. Marine and Petroleum Geology,2020,115:104282. doi: 10.1016/j.marpetgeo.2020.104282 |
[59] |
Li D L,Du J W,He S,et al. Measurement and modeling of the effective thermal conductivity for porous methane hydrate samples[J]. Science China Chemistry,2012,55(3):373-379. doi: 10.1007/s11426-011-4459-8 |
[60] |
陈玉凤,吴能友,梁德青,等. 基于分形孔隙模型的含天然气水合物沉积物电阻率数值模拟[J]. 天然气工业,2018,38(11):128-134. doi: 10.3787/j.issn.1000-0976.2018.11.017 |
[61] |
Zhao Y L,Guo K H,Liang D,et al. Formation process and fractal growth model of HCFC-141b refrigerant gas hydrate[J]. Science in China Series B:Chemistry,2002,45(2):216-224. doi: 10.1360/02yb9029 |
[62] |
杨海健,李小森,陈朝阳,等. 多孔介质中气体水合物降压分解的分形理论研究[J]. 化学学报,2009,67(8):808-812. doi: 10.3321/j.issn:0567-7351.2009.08.016 |
[63] |
Li S L,Ma Q L,Sun C Y,et al. A fractal approach on modeling gas hydrate phase equilibria in porous media[J]. Fluid Phase Equilibria,2013,356:277-283. doi: 10.1016/j.fluid.2013.07.047 |
[64] |
Zhang H T,Luo X Q,Bi J F,et al. Multi-component fractal representation of multi-scale structure of natural gas hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2018,60:144-152. doi: 10.1016/j.jngse.2018.10.015 |
[65] |
沈建东,王胜杰,何晓霞,等. 分形扩散对海下沉积层中水合物生成过程的影响[J]. 天然气工业,2004,24:24-26,126. doi: 10.3321/j.issn:1000-0976.2004.05.008 |
[66] |
姚衍桃,詹文欢. 分形在南海北部陆坡断裂与天然气水合物关系研究中的应用[J]. 中山大学学报(自然科学版),2009,48(5):131-136. doi: 10.3321/j.issn:0529-6579.2009.05.026 |
[67] |
韩 博,李承中,范 勇,等. 水合物钻井液微观结构热传导分形模型研究[J]. 地质与勘探,2012,48(4):829-834. |
[68] |
Jang J B,Cao S C,Stern L A,et al. Impact of pore-fluid chemistry on fine-grained sediment fabric and compressibility[J]. Journal of Geophysical Research:Solid Earth,2018,123:5495-5514. doi: 10.1029/2018JB015872 |
[69] |
Santamarina J, Klein K, Palomino A, et al. Micro-scale aspects of chemical-mechanical coupling: Interparticle forces and fabric[C] //Dimaio C. Chemo-mechanical Coupling in Clays: From Nano-scale to Engineering Applications. Maratea, Italia, 2001. |
[70] |
钱学森. 论技术科学[J]. 科学通报,1957,8(3):97-104. |