ISSN 1009-2722 CN37-1475/P 海洋地质前沿 Marine Geology Frontiers

文章编号:1009-2722(2012)01-0055-07

地震荷载作用下饱和砂土的 p—y 关系

曲延大

(中海油田服务股份有限公司,天津 300451)

摘 要:利用给土层施加反压的方法控制饱和砂土中的超孔隙水压力,以此模拟受地震荷 载作用饱和砂土具有残余孔压时的状态,进而对具有不同状态饱和砂土与桩的相互作用 进行模型试验,研究 *p*—y 关系随饱和砂土中残余孔压的变化规律。结果表明,可以按照 具有残余孔压饱和砂土的强度确定其极限抗力以及土层反力模量系数,进而确定受震动 荷载作用的饱和砂土 *p*—y 关系。

桩身受到的土层水平抗力与水平位移的关系 曲线(简称 p-y 曲线)被广泛用于评价海洋平台 桩基础在水平荷载作用下的桩土相互作用。目 前,已有方法^[1,2]解决了静荷载作用下饱和砂土 无残余孔压时 p-y 曲线的确定。但如何确定受 地震荷载作用时饱和砂土的 *p*—*y* 曲线仍是需要 进一步研究的问题。地震作用下饱和砂土层会产 生震动累积孔隙水压力,饱和砂土的液化就是土 层中的震动累积残余孔隙水压力达到的土层上覆 有效压力的结果。当饱和砂土层中的震动累积残 余孔隙水压力没有达到土层受到的上覆有效压力 时,尽管此时土层没有发生液化,但是由于土层中 残余孔压的存在会使饱和砂土层弱化。以往针对 已经发生液化的饱和砂土层以及有残余孔压但没 有发生液化的饱和砂土层与桩相互作用的 p-y关系做过一些探讨[3-7],然而由于没有能够在维持 饱和土层中恒定残余孔压条件下的实测 p-y 曲 线,对液化和弱化饱和砂土的 p-y 关系的变化 规律尚缺乏定量的认识。为此,依据有效应力原 理,利用在饱和砂土层中施加反压的方法使饱和

收稿日期:2011-07-26

基金项目:国家自然科学基金(50579050)

作者简介:曲延大(1955—),男,高级工程师,主要从事海洋 工程勘察与海洋工程研究工作. E-mail:quyd@cosl-fugro.com 土层维持特定的超孔隙水压力,以模拟地震荷载作 用下饱和砂土中由于残余孔压而导致的弱化状态 或液化状态,进而通过模型试验实测具有不同残余 孔压饱和砂土层与桩相互作用的 *p*—*y* 曲线。

1 模型试验简介

模型试验在一钢质密闭模型试验箱内进行。 试验箱由箱体和箱盖组成。箱体尺寸为120 cm× 60 cm×110 cm,箱盖尺寸120 cm×60 cm×30 cm。试验时,通过箱盖顶部进气孔给饱和土层施 加上覆压力,利用箱体侧壁安装的气缸给桩顶施 加水平荷载;通过箱体长度侧壁靠近底部处的2 个进、排水孔给饱和土层,施加反压。箱体侧壁安 装了3 个孔压传感器测量土层的孔隙水压力。土 层与箱盖之间用乳胶膜相隔,并通过箱体和箱盖 之间的法兰密封。图1给出了桩土相互作用模型 试验装置简图。

模型试验土层为粉砂质细砂,其最大与最小 孔隙比分别为 $e_{max} = 1.125$, $e_{min} = 0.6922$, 图 2 给 出了筛分试验结果。试验土层厚110 cm, 分 5 层 制备,每层控制高度为22 cm。准备试验时, 先将 模型桩固定在模型箱中央, 然后根据预定的相对 密度称量每层所需的干砂, 倒入模型箱, 使之均匀 地填满预定高度。采用分层水头饱和方法饱和土 层。每层土的饱和过程一般需要 4~5 h。土层 饱和后,在其上面平铺乳胶膜,然后安装模型试验 箱盖将乳胶膜密封。

图 1 模型试验装置简图

Fig. 1 Layout of model tests

图 2 颗粒级配曲线 Fig. 2 Grain size distribution curve

模型试验土层的相对密度分别为 30% 和 50%。对每种相对密度进行 5 种不同残余孔压饱 和砂土的模型试验。试验过程中土层受到的上覆 压力为 20 kPa。按下述步骤进行桩土相互作用 的模型试验:

(1)关闭模型试验箱底部排水开关,通过箱盖 上的进气孔,利用气压给饱和后的土层施加上覆压 力。本次试验中,给土层施加的上覆压力为 20 kPa。

(2)读取 3 个孔压传感器的读数,确定由于 土层受到上覆压力后而产生的超孔隙水压力,据 此计算土层中的孔压系数 B。试验结果表明,采 用分层水头饱和方法制备的土层孔压系数 B> 0.95。

(3)打开模型试验箱底部排水开关使土层固 结排水。当土层中孔压传感器的读数降至施加上 覆压力前的读数、且关闭排水开关后孔压传感器 的读数不再变化时,认为土层在上覆有效压力作用 下的固结已经完成,整个固结过程大约持续1h。

(4) 通过排水开关给土层施加反压,在土层 中造成可以控制的超孔隙水压力,以模拟具有一 定弱化状态的饱和土层。试验中,按照 0、0.25、 0.5、0.75、1.0五种孔压比,即土层中的超孔隙水 压力与土层受到的上覆有效压力之比(以下用 *R*。 表示)控制土层中的残余孔隙水压力。

(5)采用分级加荷方法在桩顶施加静水平荷载,测量每级荷载作用下桩顶的水平位移以及桩 身弯矩。加荷过程中,保持土层中的残余孔隙水 压力为一定值。

(6)打开箱盖,取出砂土。此时应注意,当有 反压施加于土层时,首先要卸去反压,然后在上覆 压力作用下重新固结,待土层固结完成后再打开 箱盖,取出砂土,同时用环刀分层取样,测其容重 及含水率,以便确定土层固结后的实际相对密度。

2 有残余孔压饱和砂土 p-y 曲线 的实测结果

依据模型试验测得的桩身弯矩,按非线性 Winkler 地基梁模型确定具有残余孔压饱和砂土 的 *p*—*y* 曲线^[8,9],图 3 和图 4 是土层表面以下 6 个不同深度处的 *p*—*y* 曲线。这些试验结果表 明,随土层中残余孔压增加,*p*—*y* 曲线的初始斜 率逐渐减小,且达到破坏时的水平极限抗力也逐 渐减小。当残余孔压比达到 1.0,即土层液化时, 土层仍具有一定的水平承载能力,这与已有的动 力离心模型试验结果基本吻合^[3-6]。

3 确定有残余孔压饱和砂土 p-y曲线的方法

对于无残余孔压饱和砂土,可以按照下述方 法确定 p - y 曲线^[2]:由式(1)与式(2)确定临界 深度 Z_r ,即 $p_{us} = p_{ud}$ 时对应的深度。如果实际计 算深度 $Z < Z_r$,依据式(1)计算土层的水平极限 抗力 p_{us} ;反之,依据式(2)计算土层的水平极限抗 力 p_{ud} 。然后,按非弱化饱和土层的内摩擦角由图 5 确定土反力模量系数 k,最后依据式(3)确定土

Fig. 3 p-y curves of the saturated sand stratum with residual pore water pressure for $D_r = 30\%$

图 4 $D_r = 50\%$ 时有残余孔压时的饱和砂土 p-y曲线

Fig. 4 p-y curves of the saturated sand stratum with residual pore water pressure for $D_r = 50\%$

层相应的 $p-\gamma$ 曲线。

$$p_{\rm us} = (C_1 \cdot Z + C_2 \cdot d) \cdot \gamma' \cdot Z \tag{1}$$

$$p_{\rm ud} = C_3 \cdot d \cdot \gamma' \cdot Z \tag{2}$$

$$p = \psi \cdot p_{c} \tanh\left[\frac{k \cdot Z}{\psi \cdot p_{c}}y\right]$$
(3)

- 式中:p为桩身受到的土层水平抗力,kPa;
 - y为桩身的水平位移,m;
 - ϕ 为抗力调整系数,在水平循环荷载作用下, ϕ

图 5 地基反力模量系数

Fig. 5 Subgrade reaction modulus coefficient

=0.9,对于静荷载,
$$\psi$$
=(3.0-0.8 $\frac{Z}{d}$) \geq 0.9;

 γ' 为砂土的浮容重, kN/m^3 ;

 C_1 、 C_2 、 C_3 为土层抗力系数,为砂土内摩擦角 的函数见式(4)、(5)和(6),也可根据图 6 确定;

d 为从表层到给定深度桩的平均直径;

*k*为土反力模量系数。

$$C_{1} = \frac{k_{0} \tan\phi \sin\beta}{\tan(\beta - \phi)\cos\alpha} + \frac{\tan^{2}\beta \tan\alpha}{\tan(\beta - \phi)} +$$
$$\tan^{2}(\tan 4) \sin^{2}(\cos 4)$$

$$k_0 \tan\beta(\tan\phi\sin\beta-\tan\alpha)$$
 (4)

$$C_2 = \frac{\tan\beta}{\tan(\beta - \phi)} - k_a \tag{5}$$

$$C_3 = k_{\alpha}(\tan^8\beta - 1) + k_0 \tan\phi \tan^4\beta \tag{6}$$

f

k

k

$$\alpha = \frac{\phi}{2};$$

$$\beta = 45 + \frac{\phi}{2};$$

$$k_0 = 0.4;$$

$$k_a = \tan^2 (45 - \frac{\phi}{2}).$$

以上分析表明,为确定具有残余孔压饱和砂 土的 p-y 关系,必须确定有残余孔压饱和砂土 层的极限抗力与土反力模量系数的变化规律,为 此,以下将依据模型试验结果,讨论土层极限抗力

图 6 土层抗力系数

Fig. 6 Strata resistance coefficients

与土反力模量系数随饱和砂土层中残余孔压比的 变化关系。

3.1 有残余孔压饱和砂土的水平极限抗力

表1与表2分别给出了依据模型试验结果确 定的相对密度30%的土层表面以下3、13与23 cm位置处的水平极限抗力与相对密度50%的土 层表面以下1与11 cm位置处的水平极限抗力。

文献[9]按 Reese 建议的土层破坏模式,推导 了能够考虑土层表面作用上覆压力时其水平极限 抗力与土强度参数之间的关系式。这里将推导的 浅部、深部土层水平极限抗力表示为土抗力系数 C_1 、 C_2 、 C_3 的函数(见式(7)与式(8)),依据式(9) 确定土层的实际极限抗力 p_n 。

表 1 弱化土层的理论与试验水平极限抗力($D_r = 30\%$) Table 1 Theoretical and test lateral ultimate resistances of degraded strata ($D_r = 30\%$)

7 F H D	理论计算结果 <i>p</i> u/(kN/m)			模型试验结果 <i>p</i> u/(kN/m)		
	Z=0.03 m	Z=0.13 m	Z=0. 23 m	Z=0.03 m	Z=0.13 m	Z=0. 23 m
0.0	11.77	17.3	21.1	11.02	18.02	21.83
0.25	8.19	11.3	13.6	9.15	12.96	15.01
0.5	5.54	7.1	8.4	4.76	7.76	8.80
0.75	2.67	3.1	3.5	1.92	3.25	3.55
1	0	0	0	0.93	1.54	1.61

表 2 弱化土层的理论与试验水平极限抗力(D_r=50%)

Table 1 Theoretical and test lateral ultimate resistances of degraded strata ($D_r = 50\%$)

孔压	理论计算结果 <i>p</i> u/(kN/m)		模型试验结果 $p_u/(kN/m)$		
比 R_{u}	Z=0.01 m	Z=0.11 m	Z=0.01 m	Z=0.11 m	
0.0	11.309	20.262	12.45	20.102	
0.25	8.446	13.713	9.00	14.32	
0.5	5.699	8.716	5.61	9.66	
0.75	2.991	3.595	3.25	5.74	
1	0	0	2.192	3.726	

$$p_{us} = (C_1 \cdot Z + C_2 \cdot d) \cdot \gamma' \cdot Z +$$

$$q \cdot (2C_1 Z + C_2 d) \tag{7}$$

$$p_{\rm ud} - C_3 \cdot a(\gamma \cdot Z + q) \tag{8}$$

$$p_{\rm u} = \psi \bullet p_{\rm c} \tag{9}$$

$$\phi_{t} = \arcsin\left[\frac{(1 - R_{ut})\sin\phi}{1 - R_{ut}\sin\phi'}\right] \tag{10}$$

式中: ϕ' 为土的有效摩擦角;

 ϕ_t 为有残余孔压饱和砂土的摩擦角;

R_{ut}为三轴试验时土样的残余孔压比。

为进一步探讨极限抗力与弱化土层强度参数 之间的关系,首先依据有效应力原理按式(10)确 定弱化土层的强度参数;然后,依据弱化土层强度 参数根据式(7)、式(8)和式(9)计算有残余孔压土 层的理论水平极限抗力,见表1和表2中的理论 计算结果。结果表明,对于具有残余孔压的饱和 砂土,按照土强度参数确定的土层理论极限抗力 低于模型试验结果,并且理论值与试验值的差异 随着残余孔压比的增加逐渐增大。而土层液化 后,按照有效应力原理确定的土抗力为零,这与模 型试验结果不一致。为了修正这一差异,依据模 型试验结果,按以下步骤反演有残余孔压饱和砂 土的强度参数:

(1) 按式(7)、(8)确定土层的临界深度 $Z_{\rm r}$ 。

(2) 对于 $R_u < 1$ 的情况,由模型试验结果,按 式(7)或式(8)与式(9) 计算对应的理论极限抗 力;对于 $R_u = 1$ 的情况,模型试验结果即为与式 (8)对应的理论极限抗力,不再利用式(9)对式(8) 的计算结果进行调整。

(3) 根据理论极限抗力由式(7)或式(8)反演 有残余孔压饱和砂土的强度。进一步确定与式 (10)对应的残余孔压比 *R*_{ut},这里将反演出的残余 孔压比定义为利用式(10)确定弱化土层实际强度 的等效孔压比,用 *R*_u[']表示。

表 3 和表 4 分别给出了与相对密度为 30% 和 50%有残余孔压饱和土层实际强度对应的等 效孔压比。结果表明,根据试验结果反分析确定 的饱和砂土不同状态的等效孔压比 *R*_u′均小于土 层的实际孔压比*R*_u,将等效孔压比与土层实际孔

表 3 弱化土层的残余孔压折减系数 $(D_r = 30\%)$

Table 3 Residual pore water pressure factor

of degraded strata ($D_r = 30\%$)

土层孔压比	土层实际强度	等效孔压比	孔压折减系数
$R_{ m u}$	¢/(°)	$R_{ m u}{}'$	$t_{\rm r}$
0.25	27.60	0.235	0.940
0.5	21.50	0.460	0.920
0.75	14.25	0.698	0.930
1	8.32	0.850	0.850

表 4 弱化土层的残余孔压折减系数

Table 4 Residual pore water pressure factor of degraded strata $(D_r = 50\%)$

土层孔压比 <i>R</i> u	土层实际强度 ∳ ^{/(°)}	等效孔压比 $R_{ m u}{}'$	孔压折减系数 <i>t_r</i>
0.25	30.10	0.225	0.900
0.5	25.20	0.430	0.860
0.75	19.02	0.630	0.840
1	14.13	0.768	0.768

压比的比值称为孔压折减系数,用 t_r 表示。图7 给出了不同相对密度的饱和砂土在不同残余孔压 比时,用于确定土层实际强度的残余孔压折减系 数随土层残余孔压比 R_u 的变化关系。结果表明, 相对密度50%饱和砂土的残余孔压折减系数小 于相对密度30%饱和砂土的结果。经分析,不同 相对密度的饱和砂土残余孔压折减系数 t_r 与土层 的实际孔压比 R_u 满足式(11)。进一步依据式 (10),有式(12)成立。于是,一旦已知土层的有效 强度参数 ϕ' 与实际孔压比 R_u ,就可以利用式(11) 与式(12)确定有残余孔压饱和砂土的强度 ϕ ,进 而依据土强度与土层水平极限抗力的关系确定相 应的水平极限抗力。

$$\begin{cases} t_{\rm r} = -0.633 \ 8R_{\rm u}^3 + 0.925 \ 2R_{\rm u}^2 - \\ 0.450 \ 2R_{\rm u} + 1 \qquad (D_{\rm r} = 30\%) \\ t_{\rm r} = -0.649 \ 4R_{\rm u}^3 + 1.066 \ 3R_{\rm u}^2 - \\ 0.648 \ 7R_{\rm u} + 1 \qquad (D_{\rm r} = 50\%) \end{cases}$$
(11)
$$\phi = \arcsin\left[\frac{(1 - t_{\rm r}R_{\rm u})\sin\phi'}{1 - t_{\rm r}R_{\rm u}\sin\phi'}\right]$$
(12)

式中: ϕ' 为土的有效内摩擦角;

 R_u 为土层残余孔压比;

t_r为残余孔压折减系数。

图 7 残余孔压折减系数随残余孔压比的变化 Fig. 7 Residual pore water pressure factor versus residual pore water pressure ratio

3.2 弱化土层土反力模量系数 k

有残余孔压饱和砂土反力模量系数 k 反映了 土体弹性模量随深度增加的变化规律,因此,可以 通过模型试验在小荷载作用下的土层 *p*—y 关系 确定。图 8 给出的结果表明,随着土层中残余孔 压比的增加,有残余孔压土层的土反力模量系数 逐渐降低。

结合表 3 与表 4 给出的不同相对密度饱和砂 土在不同状态时的实际土强度,图 9 给出了有残 余孔压土反力模量系数 k 与其强度的变化关系, 结果表明,随土层强度的增加,土反力模量系数 k 逐渐增大,并且弱化土层土反力模量系数可以通 过式(13)确定。

图 8 土反力模量系数与残余孔压比关系

4 预测与实测结果比较

根据以上对弱化饱和土层极限水平抗力与土 反力模量系数变化规律的分析,计算与不同模型 试验条件对应的有残余孔压饱和土层的 *p*—*y* 曲 线,结果见图 10 与图 11 中的实线。将计算曲线 与试验结果(见图中的标记)进行比较表明,计算 结果与模型试验结果较为吻合。

为进一步说明确定出的弱化 p-y 曲线的合理性,采用 Winkler 地基梁模型,利用上述方法确定的有残余孔压饱和砂土 p-y 曲线反分析水平荷载作用下的桩身弯矩,并与模型试验结果进行比较,结果见图 12。比较表明,预测出的最大桩身弯矩与模型试验结果也基本吻合。

5 **结**语

利用给饱和土层施加反压的方法,模拟地震 荷载导致饱和砂土产生残余孔压时的状态,进而 针对相对密度为 30%、50% 的饱和土层,通过模 型试验,研究了有残余孔压的饱和砂土层的极限 抗力与反力模量系数随饱和砂土层中残余孔压比 的变化关系。结果表明,随土层残余孔压比的增 加,土层的水平极限抗力与模量系数逐渐降低。 由模型试验结果,根据有效应力原理,建立了确定 有残余孔压饱和砂土强度参数的方法。进而根据 模型试验结果分析土反力模量系数的变化,建议 了确定有残余孔压饱和砂土反力模量系数的关 系,在此基础上,建议了一种确定有残余孔压饱和 砂土 *p*—*y* 曲线的方法。利用本文建议方法确定 地震荷载作用下饱和砂土 *p*—*y* 曲线时,应通过 地震响应分析确定饱和砂土层的残余孔压,进而

图 12 预测与实测桩身反应的比较 (D_r=30%)

Fig. 12 Predicted and tested moments along the pile $(D_r = 30\%)$

再确定土层的 p—y 曲线。

参考文献:

- [1] Reese L C, Cox W R. Analysis of laterally-loaded piles in sand[M]. Texas:Offshore Technology Conference, 1974.
- [2] American Petroleum Institute. Recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design [S]. Washington: RP 2A-WSD, 2000.
- [3] Liu L , Dobry R. Effect of liquefaction on lateral response of piles by centrifuge model tests[J]. National Center for Earthquake Engineering Research Bulletin, 1995, 9(1): 7-11.
- [4] Abdoun T. Modeling of seismically induced lateral spreading of multi-layered soils and its effects on pile foundations
 [D]. New York: Rensselaer Polytechnic Institute, 1997.

- [5] Wilson D W, Boulanger R W, Kutter B L. Seismic lateral resistance of liquefying sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126 (10): 898-906.
- [6] 王建华,冯士伦. 液化土层中桩基水平承载特性分析[J].
 岩土力学,2005,26(10):1597-1601.
- [7] Ashour M, Norris G. Modeling lateral soil-pile response on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 129(5): 404-414.
- [8] 王建华,戚春香,余正春,等.弱化饱和砂土中桩的 p-y 曲线 与极限抗力研究[J].岩土工程学报,2008,30(3):309-315.
- [9] 王建华,戚春香.按强度参数确定弱化土层水平极限抗力的 探讨[J].天津大学学报,2008,41(4):454-460.

P-Y RELATIONSHIP OF SATURATED SANDS UNDER SEISMIC LOADS

QU Yanda

(Geophysical-China Oilfield Services Limited, Tianjin 300451, China)

Abstract: The excess pore water pressure in saturated sands was controlled by applying the back pressure to the stratum, which was used to simulate the saturated sand with the residual pore water pressure under seismic loads. Model tests of the soil-pile interaction were conducted to research variations of p-y curves of saturated sands with different states with an increase of the residual pore water pressure. Research results showed that the ultimate lateral resistance and the subgrade reaction modulus coefficient can be determined based on strength parameters of saturated sand with residual pore water pressures. p-y curves of saturated sands were further determined under seismic loads.

Key words: *p*-*y* curves; soil-pile interaction; ultimate lateral resistances; degradation stratum; soil strength parameter