康琳,郭涛,王伟,等.基于地层厚度趋势相关性分析的走滑位移量计算——以渤海湾盆地辽东断裂为例[J].海洋地质前沿,2020,36(11): 2-10.

基于地层厚度趋势相关性分析的走滑位移量计算

——以渤海湾盆地辽东断裂为例

康琳,郭涛,王伟,张参,王国强

(中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452)

摘 要:作为郑庐断裂带东支的重要组成部分,辽东断裂穿越渤海湾盆地辽东湾坳陷东部,属 于晚期形成的经典平直型走滑断裂。近年来,沿其周围发现了多个油田和含油气构造,而缺 少精细求取海域走滑断裂走滑位移量的方法一直是制约该区域成藏条件分析的难点。基于 最新的三维连片地震资料精细解释,依据构造特征及变形机制将辽东走滑断裂分为北、中、南 3段,提出一种新方法——通过互相关系数对走滑断裂两盘地层厚度变化趋势进行相似性分 析,结合被错动沉积体范围恢复进行验证,定量求取出各段不同时期的走滑位移量。结果表 明,辽东走滑断裂从东营组至今走滑速率逐渐减弱,且由北至南走滑变形经历了"强一弱一强" 的过程。结合钻井资料,辽东走滑断裂北段和南段由于较大的走滑位移量让其具有较强的侧 向封闭能力,其控制形成的圈闭也更有利于油气运聚,具有良好的成藏潜力。 关键词:渤海湾盆地;辽东断裂;走滑位移量;构造分段性;相关性分析 中图分类号:P618.130.2 文献标识码:A DOI:10.16028/j.1009-2722.2020.145

0 引言

走滑位移的厘定对于确定走滑断裂两侧地质体的古构造位置、恢复古构造形态、研究走滑活动 对断裂两侧一系列盆地的形成和演化具有十分重 要的意义。关于走滑断裂位移量的计算前人早已 做过大量研究及有益的探讨,概括起来主要有以下 3种方法:①古地磁对比法或者地质体对比法。在 大尺度范围内通过地质填图对比断裂带两侧地质 体构造形变的特征,从而确定走滑水平相对位移 量^[1-3]。韩国卿等^[4]通过对断裂带两侧西拉木伦河 缝合带和倭勒根岩群展布的研究,确定嫩江一八里 罕断裂带的现今累计走滑位移量在 40~50 km。②沙 箱模拟法。单家增等^[5]根据物理模拟推测辽河坳

收稿日期: 2020-09-20

资助项目:"十三五"国家科技重大专项"中国近海富烃凹陷优选与有利 勘探方向预测"(2016ZX05024-002-006)

作者简介:康琳(1988-),男,硕士,工程师,主要从事油区构造解析及地 球物理勘探方面的研究工作. E-mail: kanglin2@cnooc.com.cn 陷东部凹陷东营组沉积期的右行走滑位移量大约 为4~8 km; 童亨茂等^[6]结合构造定量分析, 估算出 辽河西部凹陷渐新世以来累计的两侧基底右行走 滑位移量约为18 km(代表郯庐断裂北段西侧分支 的走滑位移量), 其中渐新世、中新世和上新世以来 的走滑位移量分别为10.5、1.8 和5.7 km, 并提出 "在纯走滑拉分的条件下, 约2/3 的走滑位移量可 以转化为伸展量"。③模型法。通过数学关系将伸 展转化为水平位移^[7-8]。该数学方法是根据刚体剪 切变形时体积不变原理推导出来的, 彭文绪等^[9]在 此基础上进一步考虑盆地形成时基底的不同形状, 设计了三角形模型、长方形模型、半地堑模型以及 地堑模型, 并根据走滑和沉降作用的关系模型推导 出莱州湾地区走滑水平位移为7~40 km, 进一步缩 短模型法的误差。

虽然前人在走滑断裂位移量方面做过大量研 究,但到目前为止,走滑断裂位移量计算依然存在 一定问题。地质点对比法虽然具有较强的说服力, 但在海域应用具有一定的限制,而物理模拟法和模 型法虽然不断改进完善,但距离地质真实情况还是 有一定的差距,其模拟条件也限制了适用范围,并 且具有较大的误差。值得注意的是,大型走滑断裂 往往存在分段性,在不同段由于变形机制不同,其 走滑量也会发生显著变化^[10],而目前针对分段性求 取位移量的方法尚无报道。

为此,本文依托最新三维地震资料,在对辽东 走滑断裂系统构造解析的基础上对其分段,并首次 尝试用走滑断裂两盘的地层厚度进行相关性分析, 结合属性刻画被错断的沉积体加以验证,得出了较 为可靠、准确的位移量数据,这一方法在同类型的 走滑断裂普遍适用。同时结合钻井资料,对辽东走 滑断裂的成藏条件进行了分析。

1 地质概况

辽东走滑断裂是郯庐断裂带东支在辽东湾段 的主要表现形式,向北延伸与辽河凹陷田庄台断裂 相连,向南与渤东断裂相接,全长约80km,贯穿渤 海湾盆地辽东湾坳陷东部,控制了辽东凹陷、辽中 凹陷及两凹陷之间的辽东凸起带^[11-14]。本次构造 分析依托覆盖整个辽东湾坳陷最新处理的三维连 片资料,其面积达1.6×10⁴km²,良好的地震分辨能 力及其方差体对深大断裂的成像更为清晰,对构造 的解析也更为系统。已有研究显示,辽东走滑断裂 在辽东湾坳陷后裂陷期(主要是东营组末期、馆陶 组及明化镇组)发生了右旋走滑活动,其走滑作用 对油气聚集分布均影响巨大^[15]。近年来,随着勘探 的不断深入,在断裂带周围已发现如锦州 23-2 等多 个油田和含油气构造,也印证了该区带具有极好的 油气勘探前景。因此,走滑位移量的求取无疑是解 决油气成藏问题的基础和关键。

长期以来,关于郑庐断裂走滑位移距离的研究 集中在前新生代左行走滑所产生的位移量,主要通 过对出露在郑庐断裂中南段地表的一系列岩石和 岩相带分析对比来确定位移量的大小。相对前新 生代左行走滑数百千米的位移量来说,新生代右行 走滑产生的位移量要小得多,只有数十千米。而用 传统的古地磁恢复法和沙箱物理模拟法这些针对 大尺度、长滑距的方法在精度上都难以满足我们的 研究要求,而由于海水的覆盖难以观测露头等地质 参考点,严重制约了对成藏条件的分析。值得注意 的是,走滑断裂在不同段由于变形机制不同,其走 滑量也会发生显著变化^[16],因此,在求取大型走滑 断裂位移量的同时应该考虑其分段性。

2 走滑位移量的定量计算

2.1 走滑断裂分段特征

由于一条大的走滑断裂的发展演化、物质组成、 深部结构和地震活动等方面存在着不均一性,因此 分段性是走滑断层的固有特性。根据构造特征解 析对大型走滑断层合理分段,是进行走滑位移量准 确计算的前提。在走滑作用中,在断裂的弯转、断 错(或阶跃)和非连续 Riedel 破裂等部位常发生汇 聚走滑和离散走滑,形成一组次级的同向叠瓦状走 滑断裂,形状类似于双重逆冲构造,两侧被主走滑 断层所围限^[17-19],此类构造在平面上的表现形式称 为走滑双重构造(图 la),在剖面上则为花状构造 (图 lb、c)。因此,对走滑双重构造的识别是清楚认

3

识走滑断裂演化机制的重要因素,其表现出的几何 不连续、构造不连续常常作为分段的重要依据^[20]。

根据发育的部位,走滑双重构造又可分为平直 型走滑双重构造和弯曲型走滑双重构造。平直段 走滑双重构造往往发育在非连续 Riedel 破裂等部 位,平面上表现为菱形的透镜体,剖面上多为"Y" 型、地堑或地垒构造,其演化模式为在低位移区平 直的断层段通常包含里德尔剪切形成的雁列断层, 随着剪切作用的增加和位移的增大,这些断层逐渐 以低角度连通起来,表明其为弱张扭环境下形成的。 弯曲段走滑双重构造在断裂的弯转、断错处较为常 见,平面上表现为两侧被主走滑断层所围限的双重 构造,剖面上表现为花状构造。根据其形成的应力 特征,可以将走滑双重构造进一步划分为挤压型走 滑双重构造和伸展型走滑双重构造。伸展型走滑 双重构造在横剖面上呈现负花状构造(图 la),挤压 型走滑双重构造在横剖面上呈现正花状构造(图 1b)。 不同类型的走滑双重构造揭示了走滑带附近张扭 或压扭的变形机制,是反映局部地区应力环境的重 要标志。

2.2 "海豚效应"对比法

辽东湾东部凹陷的走滑活动起始于沙一二段 的断拗过渡期,东营组时期活动最为强烈,新近纪 以来继续存在显著活动并持续到第四纪^[21-22]。辽 东断裂属于典型的平直型走滑断裂,剖面上为陡立 的走滑断层,缺少拉张的分量,对断层两盘地层厚 度在垂向上改造不明显。因此,走滑断层两盘在被 错断之前同一地质点的地层厚度大致相同,在发生 走滑作用之后,两侧地层也被错断,并在垂直断层 的剖面上呈现出不同的厚度,这也符合经典的"海 豚效应"理论。基于这种理论,选取其中一盘固定 长度的地层厚度变化趋势,依次与另一盘相同长度 的进行比对,当两趋势线达到最相似的时候所经过 的距离即为走滑位移量(图 2),这种方式即为"海豚 效应"对比法。根据以上分析,建立了求取位移量 的对比模型。以一条右旋走滑断层为例,在断层右 盘选取断层固定长度 h,并统计出这段长度内地层 厚度变化趋势曲线,依次等间距(L)向右旋方向(因 为已经确定为右旋断层,故不必往左旋方向)与另 一盘的地层厚度变化趋势进行对比分析。需要注 意的是, L 的取值一定要小于 h, 所得结果才会更为

合理。此外,由于目标区地层埋深较浅,压实作用 对地层厚度的影响可以忽略,因此,厚度读取时选 用时间厚度即可。

2.3 地层厚度趋势相关性分析

在对比走滑断裂两侧地层厚度趋势时,很难去 定量描述两者的相似程度。因此,引用了相关系数 (correlation coefficient)用以反映变量之间的相关关 系密切程度,并用 *Q* 来表示其计算结果。相关系数 是按积差方法计算,以两变量与各自平均值的离差 为基础,通过两个离差相乘来反映两变量之间相关 程度,如下:

$$Q = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

式中:x,y为2组样本中的数值;

x, y为所在组的平均值。

Q为相关系数计算结果,范围为-1~1。根据 统计学原理,当Q值越接近1,表示2组样本越 相似,反之越不相似。在模型中,计算了一系列Q 值并假设Q6的值是最大的,对比当Q=Q6时两 盘地层厚度变化趋势线,发现其吻合程度较高 (图3)。由于两盘地层厚度趋势往往在错动前最 为相似,因此,求取的Q值在理论上整体应具有正 态分布的特征,但由于误差等因素,也有可能存在 局部的异常Q值,在实际求取中应结合地质背景 加以分析。在求取完Q值后,只要计算右盘在Q 值最大时移动的距离D,即为断裂的走滑位移量。 在模型中,D=5L,由于L是已知的,所以位移量很 容易得出。

Fig.3 Results of correlation analysis of thickness variation trend and the degree of similarity between the two walls when *Q* value is the largest

3 典型地区应用效果

3.1 辽东走滑断裂分段构造特征

辽东 1 号走滑断裂北段自锦州 23-2N 构造起 到锦州 32-4 构造区,为郯庐断裂东支的主要构成部 分。其倾角集中于 80°~90°,走向主要呈 NE 及 NNE, 仅在局部地区发生弯曲,是一条典型的平直型走滑 断裂。根据方差切片及地震剖面,识别出 2 处不同 类型的走滑双重构造,故将辽东走滑断裂分为 3 段 (图 4,1 000 ms)。

从断裂的平面特征看,北段平面上较为平直,伴 生断裂较少,多发育 R 型、P 型剪切断裂以及 R'反向 剪切断裂,而张性正断层 T 相对发育较少。特别是 在锦州 23-2N 地区,由辽东走滑断裂与其伴生的 2 条走滑断裂作为主干围限断层发生汇聚走滑作用,夹 持的断块在剖面上具有上拱现象,表现为正花状构造 特征(图 5),平面上形成局部的挤压走滑,反映出强 挤压-走滑的应变环境。中段整体平面上较为平直, 伴生断裂较少,向北发育典型的平直型走滑双重构造, 剖面上表现为"Y 型"、"多级 Y 型"或"似花状"等 构造样式(图 6),反应出弱走滑-伸展的应变环境;向 南则发育伸展型走滑双重构造,剖面表现为负花状构 造,表现为强张扭的应变环境。南段伴生断裂逐渐增 多,在平面上为一系列 NE 向的马尾状断层组合,向 NE 收敛,向 SW 撒开,剖面为似花状构造(图 7),揭示了其强张扭的应变环境^[23]。

综上,辽东走滑断裂北、中、南3段由于不同的 变形机制具有不同的走滑位移量,需进行分段求取。

3.2 相关分析的计算结果

依据上述方法,针对辽东走滑断裂在东营组、 馆陶组及明化镇组的走滑位移量及位移速率开始 计算,并对每次计算的 Q 值分布特征及当 Q 值最 大时走滑断裂两盘吻合程度进行了统计分析(图 8)。 这里需要注意的是,Q 值是一个相对大小的概念, 在同一组计算出的 Q 值可以进行比较进而选出最 大 Q 值(Q_{max}),而不同组的 Q 值本身并不具可比性。 实际上,由于受断层的倾角、性质,地层的差异沉降 及压实作用等地质因素的影响,不同组 Q 值的大小 具有明显的差异,这一现象本身也符合地质规律。

需要强调的是,当*Q*值最大时求出的位移量是指 某一时期至今的累积位移量。例如,求取东营组的位移 量(*D*_{E3d}),计算得出的是东营组至今走滑位移量的累积。

 $D_{\rm s1} = D_{\rm E3d} + D_{\rm N1g} + D_{\rm N2m}$

式中:D_{N1g}代表馆陶组的位移量;

D_{N2m}反应明化镇组的位移量。

继续计算出馆陶组的走滑位移量(D_{s2}),

 $D_{\rm s2} = D_{\rm N1g} + D_{\rm N2m}$

所以东营组的实际走滑位移量为:

$$\Delta D = D_{\rm s1} - D_{\rm s2} = D_{\rm E3}$$

图 4 辽东湾东北部方差切片

Fig.4 Section of variance in the northeast of Liaodong Bay

Fig.5 The characteristics of normal flower-like structure in the northern section of Liaodong strike-slip fault

运用这种方法,辽东走滑断裂北、中、南在东营组、馆 陶组及明化镇组的走滑位移量的计算结果如表1所示。

从时间上看,东营组走滑速率最强,其次是馆 陶组,明化镇组以后逐渐减弱。而从走滑位移量来 看,东营组和馆陶组的走滑位移量大致相同,明化 镇组以后基本位移量极小。值得注意的是,无论中

段还是北段,明化镇组的走滑速率明显减弱,这种 特征显然与作为郑庐断裂西支的辽河西部走滑断 裂不同^[6]。从空间上看,辽东走滑断裂在不同部位 因其走向、所受应力等的不同,表现出不同的走滑 位移强度,由南到北都体现出应力的先减弱再增强 过程,这与前人的研究大致吻合^[16]。

Fig.8 The correlation analysis results of the thickness variation trend of the north, middle and south sections of Liaodong strike-slip fault in each period and the similarities of the two walls when the *Q* value is the maximum

Table 1Subsection displacement of Liaodong strike-slip fault						
位移量/km	速率/(km·Ma ⁻¹)	位移量/km	速率/(km·Ma ⁻¹)	位移量/km	速率/(km·Ma ⁻¹)	
明化镇组时期—今	0.5	0.09	0.3	0.06	0.5	0.09
馆陶组时期	4	0.22	1.2	0.07	4	0.22
东营组时期	4.7	0.57	1.6	0.2	6.5	0.79

图 9 被错断沉积体的平面恢复 Fig.9 Planar restoration of a fractured sedimentary layer

3.4 位移量与油气分布

走滑断层在滑动的过程中,断层两盘的岩体长 距离相对错动、紧密磨擦和研磨,往往在断面上形 成大量的断层泥^[24],对油气封闭性好,因此,较强走 滑速率、较大走滑位移量的压扭性断层往往具有较 好的封闭能力。通过上述分析,辽东走滑断裂北段 累计走滑量为 8.5 km,相对于中段具有较大的走滑 速率及走滑位移量,因此判定辽东走滑断裂北段封 闭能力极强。

从锦州 23-2 地区钻探的 K1 井和 K2 井也印证 了这一结论。图 10 所示 2 口井分别位于辽东走滑

Fig.10 Joint well seismic profile through Well K1 and Well K2

断裂的两侧,位于西盘的 K1 井测井显示结果较好, 在馆陶组具有 28.5 m 厚的油层,而 K2 井测井结果 无显示,反应油气很难从西侧穿越走滑断裂到东侧, 较大走滑速率及位移量下的走滑断层具有极强的 封闭能力。

综上分析,辽东走滑断裂北部和南部由于较大的走滑位移量让其具有较强的侧向封闭能力,因此, 北部和南部的由该断裂控制形成的圈闭具有良好 的成藏潜力,是下一步勘探的重点。

4 结论与讨论

本文从走滑断裂构造分段特征及地层厚度趋势相关性分析入手,以辽东走滑断裂为例,建立了 一种新的对平直型走滑断裂位移量求取的方法,通 过对被错动沉积体恢复,验证了该方法的准确性与 合理性,在同类型走滑断裂中具有较好的适用性。

(1)传统的海域走滑位移量求取方式在分段差 异和精细程度方面存在着一定的局限性,新方法在 构造分段的基础上,通过相关系数对走滑断裂两盘 地层厚度变化进行相似性分析,并结合属性刻画沉 积体范围进行验证,可定量求取不同段不同时期的 走滑位移量。

(2)根据最新的连片三维地震资料和构造解析, 辽东走滑断裂可分为具有强压扭变形的北段、弱张 扭变形的中段和强张扭变形的南段,变形强度的差 异造成了北段和南段走滑位移量较大,中段由于处 于应力转换区域,因此走滑位移量较小。整体上看, 辽东走滑断裂从东营组时期到明化镇组时期累积 走滑位移量约为 10 km,走滑速率呈现明显减弱的 趋势。

(3)目前,辽东走滑断裂带北部已相继发现一 系列含油气构造,而中部、南部发现较少,勘探程度 较低。由于断裂走滑强度与封闭能力具有一定的 正相关性,因此,推测辽东走滑断裂南段具有较强 的封闭能力,在运移条件和储盖组合相同的情况下, 其控制形成的圈闭具有更好的成藏潜力,是下一步 勘探的重点。

参考文献:

- [1] 万天丰. 中国大地构造学[M]. 北京: 地质出版社, 2011: 169-182.
- [2] 朱光,刘国生,牛漫兰,等. 郯庐断裂带的平移运动与成因[J].

地质通报, 2003, 22(3): 200-207.

- [3] 施炜,张岳桥,董树文. 郯庐断裂带中段第四纪活动及其分段特征[J]. 地球学报, 2003, 24(1): 11-18.
- [4] 韩国卿,刘永江, Franz N, et al. 松辽盆地西缘边界断裂带中南段走滑性质时间及其位移量[J]. 中国科学:地球科学, 2013, 42(4): 471-482.
- [5] 单家增,张占文,孙红军,等.营口一佟二堡断裂带成因机制的 构造物理模拟实验研究[J].石油勘探与开发,2004,31(1):15-17.
- [6] 童亨茂, 宓荣三, 于天才, 等. 渤海湾盆地辽河西部凹陷的走滑 构造作用[J]. 地质学报, 2008, 82(8): 1017-1026.
- [7] 余朝华,韩清华,董冬冬,等.莱州湾地区郯庐断裂中段新生代右 旋走滑位移量的估算[J].天然气地球科学,2008,19(1): 62-69.
- [8] 曹忠祥.营口-潍坊断裂带新生代走滑拉分-裂陷盆地伸展量、 沉降量估算[J].地质科学,2008,43(1):65-81.
- [9] 彭文绪,张如才,孙和风,等.古新世以来郑庐断裂的位移量及 其对莱州湾凹陷的控制[J].大地构造与成矿,2010,34(4):585-592.
- [10] PEACOCK D C. Displacements and segment linkage in strikeslip fault zones[J]. Journal of Structural Geology, 1991, 11(9): 1026-1035.
- [11] 徐佑德,柳忠泉. 郑庐断裂带营潍段走滑断裂特征[J]. 石油天 然气学报, 2006, 28(6): 12-15.
- [12] 王应斌,黄雷.渤海海域营潍断裂带展布特征及新生代控益 模式[J].地质学报,2013,87(12):1811-1888.
- [13] 孙磉礅. 营潍断裂带结构特征及其与相邻盆地的关系[J]. 大 地构造与成矿, 2008, 32(4): 418-426.
- [14] 周斌,邓志辉,晁洪太,等.营潍断裂带走滑构造特征、演化及 动力学机制[J].西北地震学报,2008,30(2):117-123.
- [15] 黄雷,周心怀,刘池洋,等. 渤海海域新生代盆地演化的重要 转折期证据及区域动力学分析[J]. 中国科学: 地球科学, 2012, 42(6): 89-94.
- [16] 曹忠祥,任凤楼,宋国奇,等.营口-潍坊断裂带对辽东湾坳陷 东部凸起的形成及构造分段的控制作用:来自物理模拟实验 和断层几何学特征的证据[J].地质科学,2008,4(2):179-188.
- [17] WOODCOCK N H, FISCHER M. Strike-slip duplexes[J]. Journal of Structural Geology, 1986, 8(7): 725-735.
- [18] MITRA S, PAUL D. Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental modls[J]. AAPG Bulletin, 2011, 95(7): 1147-1180.
- [19] CEMBRANO J, GONZALEZA G, ARANCIBIAB G, et al. Fault zone development and strain partitioning in an extensional strike-slip duplex: a case study from the Mesozoic Atacama fault system[J]. Northern Chile. Tectonophysics, 2005, 400: 105-125.
- [20] 孟文,陈群策,吴满路,等.龙门山断裂带现今构造应力场 特征及分段性研究[J].地球物理学进展,2013,28(3):1150-1160.
- [21] 康琳, 吕丁友, 尚锁贵, 等. 辽东湾坳陷新生代构造变形特征 及营潍断裂带的表现[J]. 石油学报, 2019, 40(增刊2): 79-90.

[22] 彭靖淞,徐长贵,吴奎,等. 郯庐断裂带辽东凸起的形成与古 辽中洼陷的瓦解[J]. 石油学报, 2015, 36(3): 274-285.

[23] HARDING T P. Seismic Characteristics and identification of negative flower structures, positive flower structures, and posit-

ive structural inversion[J]. AAPG Bulletin, 1985, 69(4): 582-600.

[24] 罗胜元,何生,王浩.断层内部结构及其对封闭性的影响[J].地球科学进展,2012,27(2):154-164.

DISPLACEMENT CALCULATION FOR STRIKE-SLIP FAULT BASED ON CORRELATION OF STRATA THICKNESS TENDENCY: A CASE FROM THE LIAODONG FAULT, OFFSHORE BOHAI BAY

KANG Lin, GUO Tao, WANG Wei, ZHANG Can, WANG Guoqiang

(Bohai Oilfield Research Institute, Tianjin Branch of CNOOC China Limited, Tianjin 300452, China)

Abstract: The Liaodong fault, located in the northeast Bohai Bay Basin, is a straight strike-slip fault formed in Late Eocene. Facts prove that the slipping of fault has a tremendous impact on the distribution of oil and gas in the region. However, the displacement of the strike-slip fault is always difficult to calculate in offshore areas for quantitative fault analysis due to various limitations. It also restricts detailed analysis of reservoir-forming conditions. Based upon the interpretation of structural features from the newly merged 3D seismic data, the Liaodong fault could be subdivided into three sections, i.e. the northern, middle, and southern sections. A new method was then adopted to analyze the similarity of strata-thickness variations trend on the two walls of the fault with the correlation coefficient. Some displaced sedimentary bodies are restored and used to check the calculated displacement with seismic attributes. The results are dependable, upon which the displacements of the Liaodong strike-slip fault in different periods and sections are acquired quantitatively. Combined with drilling data, it is confirmed that the strike-slip fault in northern Liaodong, where occur large displacement, has good fault sealing ability. Similar to the north, traps in the south are also favorable for hydrocarbon accumulation, due to good fault sealing conditions. **Key words:** Bohai Bay Basin; Liaodong Fault; displacement of strike-slip; tectonic segmentation; correlation analysis